diff --git a/2D_elasticity.txt~ b/2D_elasticity.txt~ deleted file mode 100644 index 95f345c1c056daf6b73ea6275ce6721d40298f2f..0000000000000000000000000000000000000000 --- a/2D_elasticity.txt~ +++ /dev/null @@ -1,5 +0,0 @@ -========================= - 2D elasticity in Fenics -========================= - -:math:`\int_{\Omega}\underline{\underline{\sigma}}:\underline{\underline{\varepsilon}}[v]d\Omega` diff --git a/doc/2D_elasticity.rst~ b/doc/2D_elasticity.rst~ deleted file mode 100644 index 7539fe20785d80dbbb38e1d2291ad6bb39533488..0000000000000000000000000000000000000000 --- a/doc/2D_elasticity.rst~ +++ /dev/null @@ -1,4 +0,0 @@ -========================= - 2D elasticity in Fenics -========================= - diff --git a/doc/index.rst b/doc/index.rst index 9acd72fc4756482c71fc3cb565d7a95c6dfec2f0..9770e9a200d28e84dce9604fedc01b708afd0e4b 100644 --- a/doc/index.rst +++ b/doc/index.rst @@ -15,6 +15,7 @@ Contents: linear_problems nonlinear_problems demo/reissner_mindlin/reissner_mindlin.rst + tips_and_tricks diff --git a/doc/tips_and_tricks.rst b/doc/tips_and_tricks.rst new file mode 100644 index 0000000000000000000000000000000000000000..d5e4c4386aa836c5d5bf7039ef88aab86d187dcc --- /dev/null +++ b/doc/tips_and_tricks.rst @@ -0,0 +1,28 @@ + +Tips and Tricks +================ + +In construction... + +.. _TipsTricksProjection: + +------------------------------------------------ +Efficient projection on DG or Quadrature spaces +------------------------------------------------ + + +For projecting a Function on a DG or Quadrature space, that is a space with no coupling between elements, the projection can be performed element-wise. For this purpose, using the LocalSolver is much faster than performing a global projection:: + + metadata={"quadrature_degree": deg} + def local_project(v,V): + dv = TrialFunction(V) + v_ = TestFunction(V) + a_proj = inner(dv,v_)*dx(metadata=metadata) + b_proj = inner(v,v_)*dx(metadata=metadata) + solver = LocalSolver(a_proj,b_proj) + solver.factorize() + u = Function(V) + solver.solve_local_rhs(u) + return u + +Local factorizations can be cached if projection is performed many times. diff --git a/examples/nonlinear_materials/vonMises_plasticity.py.rst b/examples/nonlinear_materials/vonMises_plasticity.py.rst index 5cedf42c764a133675053e8820371c0b9601b5d9..4b60fb08b3968e55226ad4f666024e5931dbada3 100644 --- a/examples/nonlinear_materials/vonMises_plasticity.py.rst +++ b/examples/nonlinear_materials/vonMises_plasticity.py.rst @@ -259,7 +259,7 @@ the stress and strain tensors. These nonlinear expressions must then be projecte back onto the associated Quadrature spaces. Since these fields are defined locally in each cell (in fact only at their associated Gauss point), this projection can be performed locally. For this reason, we define a ``local_project`` function -that use the ``LocalSolver`` to gain in efficiency (see also :ref:`TipsStressProjection`_) +that use the ``LocalSolver`` to gain in efficiency (see also :ref:`TipsTricksProjection`) for more details:: def local_project(v, V, u=None): diff --git a/toolbox_list~ b/toolbox_list~ deleted file mode 100644 index 62717c1241b45cfbc0d8dffb2f4527a1256b8e2a..0000000000000000000000000000000000000000 --- a/toolbox_list~ +++ /dev/null @@ -1,74 +0,0 @@ -############### -Linear problems -############### - -Elastostatics : -standard continuous galerkin -* 2D plane stress/strain -* 3D isotropic, orthotropic - -discontinous galerkin --> volumetric locking - -mixed formulation using Hu-Wahizu --> volumetric locking - -Elastodynamics -* time integration Newmark scheme, theta -* modal analysis with SLEPC - -Poroelasticity - -Mixing continuum and interfaces -* elastic interfaces/supports (beam on elastic foundation) - -Linear Fracture Mechanics -* G-theta method to compute J-integral and stress intensity factors - -Homogenization in elasticity --> treatment of rigid particles with Lagrange multipliers - -Linear Buckling - -################## -Nonlinear problems -################## - -Hyperelasticity : --> compressible neo-hookean --> incompressible neo-hookean - -Viscoelasticity -* Maxwell model -* Kelvin-Voigt model - -Elasto-plasticity -* radial return for von Mises/Drucker Prager -* limit analysis with augmented Lagrangian - -Viscoplasticity -* yield stress fluids - -Contact -* resolution of normal contact with TAO -* contact with AL - -Von-Karman plates - -################ -Beams and Plates -################ - -Love-Kirchhoff plates with DG - -Reissner-Mindlin plates - -Higher-order plate models (warping, Bending-Gradient) - -##### -Misc -##### -Topology Optimization -(undocumented example) - -Linear Matching Method