Commit 5682d82b authored by Jeremy BLEYER's avatar Jeremy BLEYER

Added citation instructions

parent 4c8e7114
File added
......@@ -24,7 +24,7 @@
},
{
"cell_type": "code",
"execution_count": 50,
"execution_count": 51,
"metadata": {},
"outputs": [
{
......@@ -879,7 +879,7 @@
},
{
"cell_type": "code",
"execution_count": 43,
"execution_count": 52,
"metadata": {},
"outputs": [],
"source": [
......@@ -926,7 +926,7 @@
},
{
"cell_type": "code",
"execution_count": 44,
"execution_count": 53,
"metadata": {},
"outputs": [],
"source": [
......@@ -955,7 +955,7 @@
},
{
"cell_type": "code",
"execution_count": 45,
"execution_count": 54,
"metadata": {},
"outputs": [
{
......@@ -979,7 +979,7 @@
},
{
"cell_type": "code",
"execution_count": 46,
"execution_count": 55,
"metadata": {},
"outputs": [
{
......@@ -1787,7 +1787,7 @@
},
{
"cell_type": "code",
"execution_count": 48,
"execution_count": 56,
"metadata": {},
"outputs": [
{
......
......@@ -9,7 +9,7 @@
#
# We will investigate here the case of a hollow hemisphere of inner (resp. outer) radius $R_i$ (resp. $R_e$). Due to the revolution symmetry, the 2D cross-section corresponds to a quarter of a hollow cylinder.
# In[50]:
# In[51]:
from __future__ import print_function
......@@ -65,7 +65,7 @@ ds = Measure("ds", subdomain_data=facets)
#
# > **Note**: we could also express the strain components in the form of a vector of size 4 in alternative of the 3D tensor representation implemented below.
# In[43]:
# In[52]:
x = SpatialCoordinate(mesh)
......@@ -104,7 +104,7 @@ def sigma(v):
#
# The final formulation is therefore pretty straightforward. Since a uniform pressure loading is applied on the outer boundary, we will also need the exterior normal vector to define the work of external forces form.
# In[44]:
# In[53]:
n = FacetNormal(mesh)
......@@ -125,7 +125,7 @@ u = Function(V, name="Displacement")
# \quad u_z=0
# \end{equation}
# In[45]:
# In[54]:
bcs = [DirichletBC(V.sub(1), Constant(0), facets, 1),
......@@ -135,7 +135,7 @@ print("Inwards radial displacement at (r=Re, theta=0): {:1.7f} (FE) {:1.7f} (Exa
print("Inwards radial displacement at (r=Ri, theta=0): {:1.7f} (FE) {:1.7f} (Exact)".format(-u(Ri, 0.)[0], float(Re**3/(Re**3-Ri**3)*((1-2*nu)*Ri+(1+nu)*Ri/2)*p/E)))
# In[46]:
# In[55]:
plt.figure()
......@@ -145,7 +145,7 @@ plt.show()
# The second loading case corresponds to a fully clamped condition on $z=0$, the vertical boundary remaining in smooth contact.
# In[48]:
# In[56]:
bcs = [DirichletBC(V, Constant((0., 0.)), facets, 1),
......
......@@ -24,7 +24,7 @@
},
{
"cell_type": "code",
"execution_count": 50,
"execution_count": 51,
"metadata": {},
"outputs": [
{
......@@ -879,7 +879,7 @@
},
{
"cell_type": "code",
"execution_count": 43,
"execution_count": 52,
"metadata": {},
"outputs": [],
"source": [
......@@ -926,7 +926,7 @@
},
{
"cell_type": "code",
"execution_count": 44,
"execution_count": 53,
"metadata": {},
"outputs": [],
"source": [
......@@ -955,7 +955,7 @@
},
{
"cell_type": "code",
"execution_count": 45,
"execution_count": 54,
"metadata": {},
"outputs": [
{
......@@ -979,7 +979,7 @@
},
{
"cell_type": "code",
"execution_count": 46,
"execution_count": 55,
"metadata": {},
"outputs": [
{
......@@ -1787,7 +1787,7 @@
},
{
"cell_type": "code",
"execution_count": 48,
"execution_count": 56,
"metadata": {},
"outputs": [
{
......
......@@ -22,6 +22,18 @@ illustrating the versatility of FEniCS.
The full set of demos can be obtained from the *COmputational MEchanics Toolbox* (COMET) available at
https://gitlab.enpc.fr/jeremy.bleyer/comet-fenics.
If you find these demos useful for your research work, please consider citing them using the following
Zenodo DOI https://doi.org/10.5281/zenodo.1287832
.. code-block:: none
@article{bleyer2018numericaltours,
title={Numerical Tours of Computational Mechanics with FEniCS},
DOI={10.5281/zenodo.1287832},
publisher={Zenodo},
author={Jeremy Bleyer},
year={2018}}
-----------------------
How do I get started ?
......
......@@ -243,7 +243,7 @@ symmetry, the 2D cross-section corresponds to a quarter of a hollow
cylinder.</p>
<div class="nbinput docutils container">
<div class="prompt highlight-none"><div class="highlight"><pre>
<span></span>In [50]:
<span></span>In [51]:
</pre></div>
</div>
<div class="input_area highlight-ipython2"><div class="highlight"><pre>
......@@ -1090,7 +1090,7 @@ a vector of size 4 in alternative of the 3D tensor representation
implemented below.</div></blockquote>
<div class="nbinput nblast docutils container">
<div class="prompt highlight-none"><div class="highlight"><pre>
<span></span>In [43]:
<span></span>In [52]:
</pre></div>
</div>
<div class="input_area highlight-ipython2"><div class="highlight"><pre>
......@@ -1148,7 +1148,7 @@ need the exterior normal vector to define the work of external forces
form.</p>
<div class="nbinput nblast docutils container">
<div class="prompt highlight-none"><div class="highlight"><pre>
<span></span>In [44]:
<span></span>In [53]:
</pre></div>
</div>
<div class="input_area highlight-ipython2"><div class="highlight"><pre>
......@@ -1175,7 +1175,7 @@ u_r(r) = -\dfrac{R_e^3}{R_e^3-R_i^3}\left((1 − 2\nu)r + (1 + \nu)\dfrac{R_i^3}
\quad u_z=0
\end{equation}</div><div class="nbinput docutils container">
<div class="prompt highlight-none"><div class="highlight"><pre>
<span></span>In [45]:
<span></span>In [54]:
</pre></div>
</div>
<div class="input_area highlight-ipython2"><div class="highlight"><pre>
......@@ -1200,7 +1200,7 @@ Inwards radial displacement at (r=Ri, theta=0): 0.0020879 (FE) 0.0020894 (Exact)
</div>
<div class="nbinput docutils container">
<div class="prompt highlight-none"><div class="highlight"><pre>
<span></span>In [46]:
<span></span>In [55]:
</pre></div>
</div>
<div class="input_area highlight-ipython2"><div class="highlight"><pre>
......@@ -1996,7 +1996,7 @@ if (IPython.notebook.kernel != null) {
<span class="math">\(z=0\)</span>, the vertical boundary remaining in smooth contact.</p>
<div class="nbinput docutils container">
<div class="prompt highlight-none"><div class="highlight"><pre>
<span></span>In [48]:
<span></span>In [56]:
</pre></div>
</div>
<div class="input_area highlight-ipython2"><div class="highlight"><pre>
......
......@@ -64,6 +64,16 @@ getting started with FEniCS using solid mechanics examples.</p>
illustrating the versatility of FEniCS.</p>
<p>The full set of demos can be obtained from the <em>COmputational MEchanics Toolbox</em> (COMET) available at
<a class="reference external" href="https://gitlab.enpc.fr/jeremy.bleyer/comet-fenics">https://gitlab.enpc.fr/jeremy.bleyer/comet-fenics</a>.</p>
<p>If you find these demos useful for your research work, please consider citing them using the following
Zenodo DOI <a class="reference external" href="https://doi.org/10.5281/zenodo.1287832">https://doi.org/10.5281/zenodo.1287832</a></p>
<div class="highlight-none"><div class="highlight"><pre><span></span>@article{bleyer2018numericaltours,
title={Numerical Tours of Computational Mechanics with FEniCS},
DOI={10.5281/zenodo.1287832},
publisher={Zenodo},
author={Jeremy Bleyer},
year={2018}}
</pre></div>
</div>
</div>
<div class="section" id="how-do-i-get-started">
<h2>How do I get started ?<a class="headerlink" href="#how-do-i-get-started" title="Permalink to this headline"></a></h2>
......@@ -107,12 +117,14 @@ a joint research unit of <a class="reference external" href="http://www.enpc.fr"
<li class="toctree-l1"><a class="reference internal" href="linear_problems.html">Linear problems in solid mechanics</a><ul>
<li class="toctree-l2"><a class="reference internal" href="demo/elasticity/2D_elasticity.py.html">2D linear elasticity</a></li>
<li class="toctree-l2"><a class="reference internal" href="demo/elasticity/orthotropic_elasticity.py.html">Orthotropic linear elasticity</a></li>
<li class="toctree-l2"><a class="reference internal" href="demo/thermoelasticity/thermoelasticity.html">Linear thermoelasticity evolution problem</a></li>
<li class="toctree-l2"><a class="reference internal" href="demo/elasticity/axisymmetric_elasticity.html">Axisymmetric formulation for elastic structures of revolution</a></li>
<li class="toctree-l2"><a class="reference internal" href="demo/thermoelasticity/thermoelasticity.html">Linear thermoelasticity (weak coupling)</a></li>
<li class="toctree-l2"><a class="reference internal" href="demo/thermoelasticity/thermoelasticity_transient.html">Thermo-elastic evolution problem (full coupling)</a></li>
<li class="toctree-l2"><a class="reference internal" href="demo/modal_analysis_dynamics/cantilever_modal.py.html">Modal analysis of an elastic structure</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="homogenization.html">Homogenization of heterogeneous materials</a><ul>
<li class="toctree-l2"><a class="reference internal" href="demo/periodic_homog_elas/periodic_homog_elas.html">Periodic homogenization of linear materials</a></li>
<li class="toctree-l2"><a class="reference internal" href="demo/periodic_homog_elas/periodic_homog_elas.html">Periodic homogenization of linear elastic materials</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="nonlinear_problems.html">Nonlinear problems in solid mechanics</a><ul>
......
Search.setIndex({docnames:["demo/2D_plasticity/vonMises_plasticity.py","demo/cohesive_zone/cohesive_zone_crack","demo/elasticity/2D_elasticity.py","demo/elasticity/axisymmetric_elasticity","demo/elasticity/orthotropic_elasticity.py","demo/modal_analysis_dynamics/cantilever_modal.py","demo/periodic_homog_elas/periodic_homog_elas","demo/reissner_mindlin/reissner_mindlin","demo/reissner_mindlin/reissner_mindlin_dg.py","demo/reissner_mindlin/reissner_mindlin_quads.py","demo/thermoelasticity/thermoelasticity","demo/thermoelasticity/thermoelasticity_transient","homogenization","index","intro","linear_problems","nonlinear_problems","tips_and_tricks"],envversion:52,filenames:["demo/2D_plasticity/vonMises_plasticity.py.rst","demo/cohesive_zone/cohesive_zone_crack.ipynb","demo/elasticity/2D_elasticity.py.rst","demo/elasticity/axisymmetric_elasticity.ipynb","demo/elasticity/orthotropic_elasticity.py.rst","demo/modal_analysis_dynamics/cantilever_modal.py.rst","demo/periodic_homog_elas/periodic_homog_elas.ipynb","demo/reissner_mindlin/reissner_mindlin.rst","demo/reissner_mindlin/reissner_mindlin_dg.py.rst","demo/reissner_mindlin/reissner_mindlin_quads.py.rst","demo/thermoelasticity/thermoelasticity.ipynb","demo/thermoelasticity/thermoelasticity_transient.ipynb","homogenization.rst","index.rst","intro.rst","linear_problems.rst","nonlinear_problems.rst","tips_and_tricks.rst"],objects:{},objnames:{},objtypes:{},terms:{"004578259190102c":[],"022675825638074e":1,"09e3":1,"0x7f0156e6fb10":[],"0x7f015b143d10":[],"0x7f04b23a7ad0":[],"0x7f04b6683d10":[],"0x7f197a372390":[],"0x7f197e644d10":[],"0x7f1a33ddbad0":[],"0x7f1a3698dd10":[],"0x7f1b5d860f10":[],"0x7f1b61f525d0":[],"0x7f1bce3d8f50":[],"0x7f1bd3bd8d10":[],"0x7f2368be1790":[],"0x7f236ceb3cd0":[],"0x7f47da9b4c50":[],"0x7f47dee87e90":[],"0x7f47df3a5bd0":[],"0x7f47df6b5650":[],"0x7f5519b883d0":[],"0x7f551de5fd10":[],"0x7f56079fb990":[],"0x7f560bcd7d10":[],"0x7f573f67dc90":[],"0x7f5743951d10":[],"0x7f588a997390":1,"0x7f588f0be330":1,"0x7f5e33f46950":[],"0x7f5e38224d10":[],"0x7f6070d88e50":[],"0x7f70c74b7b10":[],"0x7f70cb791d10":[],"0x7f73d8b17450":[],"0x7f73dcde8d10":[],"0x7f75b1084d90":[],"0x7f75b62d0650":[],"0x7f825fc0b7d0":[],"0x7f8263edcd10":[],"0x7f8287f5ec50":[],"0x7f828ab12d10":[],"0x7f828f5be950":[],"0x7f8293891d10":[],"0x7f8673c447d0":[],"0x7f8677f1bd10":[],"0x7f9200cdea10":[],"0x7f9203890d10":[],"0x7f9487a074d0":[],"0x7f948bcd6d10":[],"0x7f963731c950":[],"0x7f963b5efd10":[],"0x7f97974bf9d0":[],"0x7f979b791d10":[],"0x7f990ec0acd0":[],"0x7f9912ee0d10":[],"0x7f9c84c16950":[],"0x7f9c88ef6d10":[],"0x7f9d28e37250":[],"0x7f9d2d10ad10":[],"0x7fa14f006c10":[],"0x7fa1532dbd10":[],"0x7fa15fd09ad0":[],"0x7fa163fe0d10":[],"0x7fa19d2f60d0":[],"0x7fa1a15cacd0":[],"0x7fa46c4b2bd0":[],"0x7fa4717bec10":[],"0x7fc6a6d0ac10":[],"0x7fc6aafdfd10":[],"0x7fcf7497fa50":[],"0x7fcf78812dd0":[],"0x7fcf7c17aed0":[],"0x7fd089cca3d0":[],"0x7fd08df9ed10":[],"0x7fd15f469a10":[],"0x7fd16201dd10":[],"0x7fd3ea4757d0":[],"0x7fd3eef16c10":[],"0x7fdc1bc87950":[],"0x7fdc1ff5ccd0":[],"0x7ff787ea8ad0":[],"1e10":1,"1e3":[2,8,9,10],"1e5":[2,3,5],"210e3":6,"237e":11,"265319087e":[8,9],"2d_elast":2,"2dlinearelast":[],"2nd":4,"2x2":[2,9],"3195907205498413e":1,"31e":11,"357114987097635e":1,"3x3":[4,9],"4th":0,"50e3":[6,10],"6235f10e1e05":[],"6x6":4,"70e3":[0,11],"733587984695249e":1,"78bbf88282cd":1,"81e":10,"910e":11,"boolean":4,"case":[0,2,3,4,5,6,10,14],"chauss\u00e9":14,"class":[1,3,4,6],"default":[0,1,5],"export":[0,2,5,8,9],"final":[0,3,11],"float":[0,2,3,8,9],"function":[0,1,2,3,4,5,6,8,9,10,11,17],"import":[0,1,2,3,4,5,6,8,9,10,11,14],"int":5,"lam\u00e9":[2,10,11],"long":11,"new":0,"return":[0,1,2,3,4,5,6,8,9,10,11,17],"static":11,"transient":[10,11],"true":[0,1,2,5,6,8,9,11],"while":[0,10],AND:6,BCs:11,Eps:6,For:[0,2,3,6,8,9,11,17],Its:10,NOT:6,One:[2,11],Res:0,That:1,The:[0,1,2,3,4,5,6,8,9,10,11,14],These:[0,11,14],Using:[2,11],With:5,__future__:[0,2,3,6,8,9,10,11],__init__:[1,6],_init_conveni:1,_init_from_ufl:1,_thermoelasticityevolut:[],a_form:1,a_newton:0,a_proj:[0,17],a_tensor:5,about:13,abs:[0,1],absolut:11,absolute_toler:1,account:[0,10],across:8,act:10,add:[8,11],added:10,adding:6,addit:[3,11],adopt:[0,11],advis:14,after:[0,5],against:[2,5,8,9],algorithm:[0,11],all:[3,5,8,11],allow:6,along:[3,5,11,14],alpha:[5,10,11],also:[0,2,3,4,5,6,8,10,11,14],altern:3,aluminium:11,amount:6,amplifi:2,analysi:[2,11,13,15,16],analyt:[0,2,4,5,8,9],ani:[0,2,10],anoth:0,app:0,appar:6,appear:11,append:0,appli:[0,3,4,5,8,11],approach:[7,11,13],appropri:[0,2,11],approxim:[5,11],arg:1,argument:[1,5],aris:[3,8],around:[3,11],arrai:[6,11],array_str:6,articl:[],as_3d_tensor:0,as_matrix:4,as_tensor:[0,3,4,8,9],as_vector:[0,1,4,6,8,9],ask:5,assembl:[0,1,5,6],assemble_system:[0,5],assert:6,assign:[0,1,2,5,6,8,9,10,11],associ:[0,3,5,6],assum:[3,4,10,11,14],attilio:0,author:13,auxiliari:6,avail:[6,14],averag:6,avg:[1,8],avoid:2,axi:[3,5,11],axial:3,axisymmetr:[13,15],axisymmetric_elast:3,b_proj:[0,17],b_tensor:5,back:[0,5],base:[2,6],basic:14,bc1:11,bc2:11,bc3:11,bcs:[3,11],bct:10,bcu:10,beam:[2,5],becaus:[0,6,8,9,10,11],been:[3,5,6,11,14],befor:[0,10],behavior:[6,9],behaviour:6,being:[2,3,4,11],below:[0,3,11],bend:[5,9],bending_mo:[8,9],bernoulli:2,beta:[0,1],beta_:0,between:[0,2,4,5,6,17],bilinear:[3,6,10,11],bitbucket:0,bleyer:14,bon2014:0,bonnet:0,book:0,bool:6,border:[6,8,9],both:[0,3,6,9,10,11],bottom:[0,3,4,5,6,10,11],boundari:[0,3,4,5,6,8,9,10,11],boxmesh:5,bug:0,build:10,bulk_energi:1,cach:17,calcul:11,call:[1,2,5],can:[0,1,2,3,4,5,6,8,9,10,11,14,17],cancel:3,cantilev:[2,5],cantilever_mod:5,cell:[0,6,9],celltyp:9,cellvolum:[1,8],chang:[2,6,10,11],chapter:0,check:[0,6,11],choic:[0,2],chom:6,choos:2,chosen:[8,9],christian:0,circl:[1,3,4,11],circular:[4,6,11],clamp:[3,5,8,9,10],classic:[0,3,5,6],close:5,cma:8,cnr:14,code:[0,2,6,11],coeffici:[2,5,10,11],cohesive_zone_crack:1,coincid:4,collaps:0,collect:[],color:4,colorbar:[1,4,6,10,11],com:[],comet:14,command:14,compar:[2,5,8,9],comparison:5,compil:[0,1],complet:[0,6,10,11],complex:[0,5],complianc:4,compon:[0,2,3,4,6,11],compress:1,comput:[0,2,4,5,6,8,10,11,14],concern:0,concret:[],condit:[0,2,3,4,5,6,8,9,11],conduct:[10,11],configur:[9,11],confus:2,consid:[0,2,3,4,5,6,9,10,11,14],consist:[0,4,5,6,11],consitut:0,constant:[0,1,2,3,4,5,6,8,9,10,11],constitut:[5,6,9,10,11],constrained_domain:6,constraint:6,construct:[6,17],constructor:11,contact:3,contain:[0,4],content:[7,12,13,15,16],continu:[0,2,8,9],continuum:[2,5,14],contour:10,contrari:[0,4],contribut:[8,9],control:[],converg:[0,5,9],convert:0,coordin:[3,6,9,11],corner:6,correct:[0,9],corrector:0,correpond:4,correspnond:6,correspond:[0,1,2,3,4,5,6,8,9,10,11],correspons:5,cos:5,cosh:5,could:[0,3,4,10,11],counterpart:3,coupl:[13,15,17],cover:14,cpp:1,creat:9,criss:[2,9],criterion:0,cross:[2,3,9,10],cumul:0,current:[0,10,11,14],curv:[0,8,9],custom:[0,9],cylind:[0,3],d2_total_energi:1,d658f792d93a:[],d_total_energi:1,damag:1,david:8,deactiv:10,deal:[0,3,6],decompos:3,deduc:6,def:[0,1,2,3,4,5,6,8,9,10,11,17],defin:[0,2,3,4,5,6,8,9,10,11],definit:[5,6,11],deflect:[2,8,9],deform:[0,2,6],deg:[9,17],deg_stress:0,deg_u:0,degre:[0,1,2,3,5,6,8,9,11],delta:11,delta_0n:1,delta_0t:1,delta_t:10,demo:[2,5,9,14],denot:3,densiti:[2,4,5,11],dep:0,depend:[6,10],deprec:[0,11],deriv:[0,1,11],des:14,describ:[2,10],detail:[0,8,11],determin:0,dev:0,deviator:0,did:0,diff:11,differ:[0,2,3,4,6,10,14],dim:[0,5],dimens:[2,3,4,6,10],dimension:[0,3],direct:4,directli:0,dirichlet:11,dirichletbc:[0,1,2,3,4,5,8,9,10,11],disabl:0,discontinu:[7,13],discret:[0,6,8],discuss:10,displac:[0,1,2,3,4,10,11],dist:1,distanc:11,distribut:[2,14],div:[],divid:[8,9],document:14,doe:[0,6,9],doi:[8,11],doing:[],dolfin:[1,3,6,10,11],domain:[1,2,3,4,6,10,11],don:10,done:0,dot:[0,1,4,5,6,8,9,10,11],dp_:0,drive:0,dtheta:8,dthole:11,dti:11,duboi:11,due:[0,3,6,10],dummi:5,dure:0,dx_shear:9,dxm:0,dynam:5,e_hom:6,each:[0,5,6,11],earlier:0,easi:6,easier:5,easili:6,ecol:14,educ:0,effect:11,effective_open:1,effici:[0,13],eigenfrequ:5,eigenmod:5,eigenpair:5,eigensolv:5,eigenstrain:[6,10],eigenvalu:5,eigenvector:5,either:[0,2,4,10],elast:[0,9,10,12,13,15],elasticity_result:2,elasto:[13,16],element:[0,2,6,8,9,11,14,17],elementari:6,elif:[1,6],els:[0,1,5,6],email:14,embed:[0,6],enabl:0,energi:9,engin:[2,4,8,11],enough:0,enpc:14,ensur:[0,4,5,6],entropi:11,enumer:[0,1,6,11],eps:[0,1,2,3,4,5,6,8,9,10,11],eps_el:0,eps_voigt:6,equal:6,equat:[0,5,8,9,10,11],equilibrium:[0,6,11],equival:[0,5,6,10],error:6,establish:0,euler:[2,11],evalu:[0,2,9],even:0,eventu:11,evolut:[0,10,13,15],exact:[3,5],exactli:[6,11],exampl:[0,2,4,9,14],except:[3,6],exclud:0,exhibit:9,exi:6,exp:1,expans:[0,10,11],expect:11,explicitli:[0,3],exploit:3,exploratori:14,exponenti:11,expr:11,express:[0,1,2,3,6,10,11],extens:[2,4],exterior:[3,4],extern:[0,3,8,10,11],extract:[5,6,10,11],exx:6,eyi:6,f_ela:0,f_ext:0,fab:1,facet:[0,1,3,4,6,8,11],facet_project:1,facetarea:1,facetnorm:[0,1,3,8],fact:[0,11],factor:[0,4,9,17],fall:0,falpha:5,familiar:6,far91:11,farhat:11,fashion:0,faster:17,featur:6,fem:0,fenic:[0,2,3,4,5,6,8,9,10,11,14],fenicsproject:14,ffc:[0,1],field:[0,2,3,8,9,10,11],fig_siz:[],figsiz:[],figur:[3,6,10,11],file:[0,1,2,3,4,5,6,8,9,10,11],file_result:[0,2,5,8,9],find:[0,2,5,6,8,9,14],finit:[0,2,6,8,11,14],finiteel:[0,1,8,9,11],first:[0,2,3,5,6,9,10,11,14],fix:[2,3],flush_output:[0,2,5,8,9],flux:11,follow:[0,2,3,4,5,6,8,9,10,11,14],fontsiz:4,forc:[0,1,3,9,10,11],form:[0,3,4,5,6,8,10,11],form_compil:0,form_compiler_paramet:0,format:[0,2,3,5,6,11],formul:[8,10,13,15],found:[0,2,8],four:5,fourier:11,frame:4,framework:[],frangi:0,free:11,freedom:6,freq_3d:5,freq_beam:5,frequenc:5,from:[0,1,2,3,4,5,6,8,9,10,11,14],full:[2,3,8,10,13,14,15],fulli:[3,5,9,10,11],functions_share_mesh:[0,2,5,8,9],functionspac:[0,1,5,6,8,9,10,11],fundament:5,gain:0,galerkin:[7,13],gamma:1,gauss:[0,9],gci:1,gcii:1,gen_hermitian:5,gener:[0,2,4,5,6,9,10,11],generate_mesh:[1,3,4,11],geometr:[1,2],geometri:[5,10],geometric_dimens:5,get:[8,13],get_eigenpair:5,get_loc:[1,9],gitlab:14,given:[0,2,3,4,5,6,10,11],global:[4,17],gmsh:[0,6],goal:6,got:1,grad:[0,1,2,4,5,6,8,9,10,11],gradient:[2,11],gradual:11,grid:9,guess:5,gxy:4,h_avg:8,han2011:8,hand:[5,10,11],handl:0,hansbo:8,harden:0,has:[2,6,11],have:[0,2,3,4,5,6,10,11,14],heat:[10,11],height:6,heintz:8,help:14,hemispher:3,henc:[0,2,6,11],here:[0,2,3,4,5,6,8,10,11],hermitian:5,hesit:14,heterogen:[6,13],hexag_incl:6,hexag_incl_facet_region:6,hexag_incl_physical_region:6,hexagon:6,hill:0,hole:[4,11],hollow:[0,3],homogen:[9,10,13],hood:0,horizont:[6,10],how:[2,4,6,13],howev:[0,3,6,9,11],http:[0,8,11,14],i_bend:5,ident:[0,1,2,3,5,6,10,11],ident_zero:1,ifsttar:14,illustr:14,implement:[0,2,3,4,6,10,11],implicit:11,impos:[0,2,3,6,8],improv:5,includ:[0,6],inclus:6,incompress:0,increas:[0,10,11],increment:[0,11],inde:[0,3,6,11],induc:0,inerti:11,inertia:5,infinit:11,influenc:10,inform:0,initi:[0,2,5,6,10,11],inject:2,inlin:1,inner:[0,1,2,3,4,5,6,8,9,10,11,17],inner_boundari:11,input:1,insid:[0,1,3,4,6],instal:14,instanc:[4,11],instant:1,instead:[0,5,6,9,11],instruct:14,integr:[0,3,4,8,9],interest:[0,14],interfac:14,interfacial_energi:1,intern:[0,8,10],interpol:[0,1,2,8,9,11],interv:3,intrins:[2,4],introduc:[5,6,10,14],introduct:13,inv:4,invari:3,invers:4,invert:[4,5],investig:[3,14],invol:8,involv:[0,3],inward:3,ipynb:[1,3,6,10,11],ipython:1,irrespect:2,isotrop:[0,2,6,9,11],issu:[0,8,9],iter:0,its:[0,3,4,5,6,11],jeremi:14,jit:1,joint:14,jump:[1,8],jupyt:[1,3,6,10,11],just:[0,1,6,10,11],k_form:5,kappa:[1,11],keep:[0,6],keep_diagon:1,keyword:[1,5,6],kind:10,kirchhoff:[8,9],knowledg:14,known:10,kwarg:1,l_form:[1,5],laboratoir:14,lagrang:[2,4,5,6,8,9],lambda:[0,1,2,5],lame:5,larg:11,largest:5,larson:8,last:[0,1,4,5,10],later:[5,6,8,9,10,11],lateral_sid:10,latex:[],latter:10,law:[4,6,11],left:[0,1,2,3,4,5,6,10,11],legend:11,len:[1,6],length:5,let:[2,11],lhs:[1,6,10,11],lib:1,lie:11,lies:10,like:[0,2,4,10],lim:0,limit:[0,8,9,11],linalg:6,line2d:[],line:[8,11],linear:[0,3,8,9,11,12,13],linear_solv:6,linearelasticity2d:[],linearthermoelast:[],linewidth:3,link:6,linspac:[0,1,11],list:0,lmbda:[0,1,2,3,5,6,10,11],lmbda_hom:6,load:[0,1,2,3,4,6,8,9,10],load_step:0,local:[0,6,17],local_project:[0,17],localsolv:[0,17],lock:[0,8,9],logarithm:11,logspac:11,longer:0,look:[0,2,4,5,8,9,14],loop:[0,11],love:9,m_form:5,macro_strain:6,macroscop:6,mai:[1,11],main:10,make:[0,11],mani:[14,17],map:[0,6],marc:0,mark:[1,3,4],mass:[5,11],mat:8,match:[0,6],materi:[2,3,4,5,8,9,11,13,16],material_paramet:6,math:5,matplotlib:[0,1,3,4,6,10,11],matric:[4,5],matrix:[0,1,2,4,5,6],maxim:2,maximum:1,maximum_iter:1,mcgraw:0,mean:1,measur:[0,1,3,4,6,8],mech_form:11,mechan:[0,2,6,8,10,11,14],medium:[2,6],mesh:[0,1,2,3,4,5,6,8,9,10,11],meshfunct:[0,1,3,4,6,8],messag:0,metadata:[0,1,9,17],method:[0,1,8,11],microscop:6,microstructur:6,middl:8,min:9,mindlin:13,minu:4,mise:[13,16],mitig:0,mix:[10,11],mixedel:[8,9,11],mixedfunctionspac:11,modal:[2,13,15],modal_analysi:5,modalanalysi:[],mode:[2,3,4,5,6,10],model:[2,8],modif:11,modul:[1,4,5,11],moduli:[4,6],modulu:[0,2,4,6],moment:6,monitor:0,monolith:11,more:[0,11,14],most:1,mpa:10,mshr:[1,3,4,6,10,11],mu_hom:6,much:[5,17],multipl:2,multipli:[0,6],mump:0,must:[0,2,6,11],n_eig:5,n_ela:0,n_elas_:0,nabla:[],name:[0,1,2,3,4,5,8,9,10],nameerror:[],national:14,natur:[0,2,11],navier:14,ncol:11,need:[0,2,3,4,8,10,11],neglect:11,neumann:[4,11],new_sig:0,newton_solv:1,next:[5,11],nincr:[0,1,11],niter:0,nitermax:0,node:11,non:[0,11],none:0,nonlinear:[0,5,10,13],nonlinearvariationalproblem:1,nonlinearvariationalsolv:1,norm:[0,1,6],normal:[0,3],notat:[0,2,4],note:[0,2,3,4,5,6,9,10,11],notebook:[1,3,6,10,11],now:[0,2,4,5,6,9,10,11],nphase:6,nre:0,nres0:0,nu_hom:6,num:6,number:[0,5,6,14],numer:[2,3,4,5,6,14],numpi:[0,1,4,5,6,11],nur:6,nuxi:4,object:1,observ:0,obtain:[0,1,2,3,4,5,6,8,9,10,11,14],occur:0,offset:6,old:0,old_p:0,old_sig:0,older:[0,14],omega:5,on_boundari:[1,2,3,4,5,6,8,9,10,11],onc:0,one:[2,5,6,8,9,11],ones:5,onli:[0,2,3,4,6,10],onto:[0,2,6],open:1,oper:[0,2,4],opertor:4,opposit:6,optim:[0,5],option:6,order:[0,2,4,10],org:[0,8,11,14],origin:5,orthotrop:[2,13,15],orthotropi:4,orthotropic_elast:4,other:[5,11,14],otherwis:[0,11],out:[0,1,2,11],outer:[1,3,11],output:[0,2],over:[6,11,14],overal:6,p_avg:0,packag:1,pair:6,parallel:2,parallelogram:6,paramet:[0,1,2,4,5,6,8,9,10,11],paraview:2,park:11,part:[0,2,3,4,5,6,8],particular:14,pattern:6,pelerin:11,penalti:1,per:[8,9,11],perfectli:[0,6],perfor:[4,11],perform:[0,5,6,17],period:[12,13],periodic_elas_homog:[],periodic_homog_ela:6,periodicboundari:6,perman:10,perturb:9,peter:8,petsc:5,petscmatrix:5,petscvector:5,phase:[0,6,10],phenomenon:0,piecewis:[0,2],pii:[],plane:[0,2,3,4,6,11],plane_stress:2,plastic:[13,16],plasticity_result:0,plate:[4,11,13],plot:[0,1,2,3,4,6,10,11],plt:[0,1,3,4,6,10,11],plu:8,point:[0,1,2,3,4,5,6,9,10,11],pointwis:2,poisson:[2,4,6,10,11],polycollect:[],polygon:[],polynomi:[2,8],pont:14,possess:[5,14],possibl:0,post:11,ppo:[0,1],pre:10,precis:6,predict:11,predictor:0,prefer:2,presenc:[6,10],present:[5,10],preserv:5,pressur:[0,3],prestress:2,pretti:3,previou:[0,3,5,6,11],previous:0,principl:[2,3,11],print:[0,1,2,3,5,6,8,9,11],print_funct:[0,2,3,6,8,9,10,11],prm:1,problem:[1,5,6,13],problem_typ:5,program:[5,8,9],progress:0,proj_sig:0,project:[0,1,2,8,9,13,14],properti:[3,6,8,11],provid:2,proxi:1,pure:[3,6],purpos:17,pvd:2,pyc:1,pyplot:[0,1,3,4,6,10,11],python2:1,python:[1,2,3,6,10,11,14],q_lim:0,quad:9,quad_schem:[0,1],quadrangl:9,quadrat:[0,9],quadratur:[0,1,9,13],quadrature_degre:[0,1,9,17],quadrature_schem:0,quadraturerepresentationdeprecationwarn:0,quadrilater:[7,8,13],quantiti:0,quarter:[0,3,4,11],quasi:[6,11],quit:[0,10,11],radial:3,radiu:[0,3,4,6],rang:[5,6],rate:0,ratio:6,ration:4,raw:[],rcparam:[],reach:11,read:[2,3,6,11],reader:14,readili:6,real:5,reaseon:6,reason:0,reassembl:0,recal:2,recent:1,rect:3,rectangl:[1,3,4,11],rectanglemesh:[2,10],rectangular:[2,5,10],redefin:0,reduc:[3,9],ref:[],refer:[],refin:0,reflect:14,reformul:[3,6],regard:10,regim:10,region:[10,11],regular:1,rei:0,reissner:13,reissner_mindlin_dg:8,reissner_mindlin_quad:9,relat:[3,5,6,9,10,11],relationship:6,relative_toler:1,relev:[5,8,9,11],remain:[3,10],remark:6,remov:[8,9],renorm:5,replac:[1,11],repres:[0,3,4,5,6],represent:[0,3,4],reproduc:0,requir:[0,4,6],res:[0,10],research:14,residu:[0,10],resolut:[],resolv:0,resort:[10,11],resp:[0,3,11],respect:[0,3,5,6,10],respons:0,rest:3,restor:0,restrict:1,result:[0,3,5,6,10],revert:0,revisit:14,revolut:[13,15],rho:[5,11],rho_g:[2,10],rhs:[1,6,10,11],right:[1,4,5,6,10,11],rm_dg_result:8,rm_result:9,root:5,rotat:[3,8,9],rule:9,sai:11,same:[2,8,11],save:11,scalar:0,scale:[9,11],scheme:[0,11],scienc:[],sciencedirect:[],scipi:5,script:[1,3,6,10,11,14],second:[3,4,6,11],section:[3,5,11],see:[0,11],seealso:[],seem:6,seen:[],segment:11,select:9,self:[1,2,3,4,6,10],separ:10,set:[0,4,5,6,10,14],set_al:[1,3,4,8],set_subdomain:[],shared_ptr:1,shear:[4,6,8,9],shear_forc:[8,9],shear_strain:[8,9],shift:5,should:[2,4,5,6,14],show:[0,1,2,3,4,6,10,11],shown:6,side:[3,5,8,9,10,11],sig0:0,sig:[0,2],sig_:0,sig_ela:0,sig_eq:0,sig_max:1,sig_n:0,sig_old:0,sigma:[0,1,2,3,4,5,6,10,11],sigma_:[4,11],sigma_tang:0,similar:[3,6,9],similarli:11,simpl:0,simplefilt:0,sinc:[0,3,5,10,11],singl:0,situat:10,size:[3,5],size_t:[0,1,3,4,6,8],skew:[6,9],slepc:5,slepceigensolv:5,slight:11,small:[2,3],smallest:5,smooth:3,softwar:[6,14],solid:[0,3,5,6,13,14],sollicit:6,solut:[2,3,5,6,8,9,10,11],solv:[0,1,2,3,4,5,6,8,9,10,11],solve_local_rh:[0,17],solver:[0,1,17],solver_paramet:6,some:[0,1,3,6,9,14],sourc:[0,6,10,11],space:[0,2,4,6,13],spatial:3,spatialcoordin:3,specif:[3,6,11],specifi:[0,5,11],specifii:0,spectral:5,spectral_shift:5,spectral_transform:5,spectrum:5,sphere:3,split:[8,9,11],sqrt:[0,1,3,5,6],squar:[4,8,9,11],sri:9,stabil:[1,8],stabl:11,stagger:11,standard:[0,3,5,6,8,10,14],start:13,state:[0,2,10],std:1,steadi:10,step:[0,11],stiff:[5,6,9],stoke:11,store:[0,6],str:[0,1,5,11],straightforward:[2,3],strain2voigt:[4,8,9],strain:[0,2,4,6,10,11],strength:0,stress2voigt:6,stress:[0,2,4,6,10,11],stricli:6,strong:[5,9],structur:[0,2,9,13,14,15],sub:[0,3,4,8,11],subdomain:[1,3,4,6],subdomain_data:[1,3,6,8],sube:[],subject:10,suboptim:0,subsequ:2,subspac:11,suffic:[0,9],suggest:6,suit:2,suitabl:2,sum:6,support:5,suppress_smal:[],surfac:[0,3],swig:1,sym:[0,1,2,3,4,5,6,8,9,10,11],symmetr:[2,4,6],symmetri:[0,3,4,5,9,11],syntax:[10,11],system:[0,5],t_re:11,tackl:[0,4],take:[1,5,10],tangent:0,target:[],tau_max:1,tell:0,temperatur:[10,11],tensor:[0,2,3,4,5,6],tensorfunctionspac:2,tensori:4,term:[0,2,3,4,6,8,10,11],testfunct:[0,1,2,3,4,5,6,8,9,10,11,17],text:[],than:17,thei:5,them:14,theori:[2,5,6],therefor:[0,3,4,5,6,10,11],therm_form:11,thermal:11,thermo:[13,15],thermoelast:[11,13,15],thermoelasticity_transi:11,thermomechan:[10,11],theta:[3,8,9],theta_:8,thi:[0,1,2,3,4,5,6,8,9,10,11,14,17],thick:[8,9],thick_cylind:0,thick_cylinder_facet_region:0,thin:[8,9],those:11,through:[11,14],throughout:[0,10],thu:[0,6,10],time:[0,1,17],tip:13,titl:[4,6,10,11],tol:0,told:11,toler:[0,11],toolbox:14,top:[4,5,6,10],topand:[],topic:14,total:[0,9,11],total_energi:1,tour:[2,3,4,6,10,11,14],traceback:1,track:0,traction:[3,4],tradtion:2,transform:5,translat:[2,6],transvers:[8,9],treat:[10,11],tri:1,trial:0,trialfunct:[0,1,2,3,4,5,6,8,9,10,11,17],triangl:[0,8],trick:13,tricontour:1,tricontourset:1,truli:6,tutori:[11,14],twice:5,two:[3,4,5,11],tying:6,type:[1,5],type_quadrilater:9,typeerror:1,typic:11,ufl_cel:[0,1,8,9,11],uflac:0,umr:14,uncondition:11,uncoupl:10,under:[0,3,9],undocu:14,unexpect:1,uniaxi:[0,6],uniform:[0,3,4,8,9,10,11],uniformli:2,unit:[6,8,9,11,14],unitsquaremesh:[8,9],unknown:[10,11],unkown:3,unkwown:11,until:0,uold:11,updat:11,upon:[6,10],use:[0,4,6,10,11,14],used:[0,2,4,6,10,11],useful:[0,9],user:8,uses:[0,8,9],usetex:[],using:[0,2,4,5,6,8,9,10,11,14,17],usr:1,v_bd:1,v_cont:1,v_d:1,v_u:1,valu:[0,2,5,6,9,11],vanish:0,variabl:[0,2,3,6],variat:[0,4,5,8,10],varieti:14,variou:0,vector:[0,1,2,3,4,5,6,9],vectorel:[0,8,9,11],vectorfunctionspac:[0,1,2,3,4,5,6,10],vectori:[2,4],veri:6,verifi:[0,6,11],versatil:14,version:[0,6,11,14],vertic:[3,4,6,10],virtual:[2,3,11],vizualis:2,voigt2stress:[4,8,9],voigt:4,vol:6,volum:[6,11],volumetr:0,von:[13,16],vonmises_plast:0,vsig:2,vte:11,vtk:2,vtu:2,vue:11,w0e:[0,1],w_max:1,wai:2,wait:11,warn:0,weak:[5,11,13,15],websit:14,weight:[2,10],welcom:14,well:[0,4,5],were:9,what:[0,13],when:[0,6,10],where:[0,2,3,5,6,10,11],wherea:[0,3,8,10],which:[0,2,3,4,5,6,9,10,11],wide:[6,14],width:6,wint:10,wise:17,without:[0,8,10,11],work:[2,3,10,11,14],would:[0,6,11],write:[0,2,4,8,9,10],written:[4,14],www:[],xdmf:[0,2,5,8,9],xdmffile:[0,2,5,8,9],xlabel:[0,11],xlim:11,xml:[0,6],yield:[0,4],ylabel:[0,11],ylim:11,you:[6,14],young:[2,4,6],zero:[0,1,6,8,11],zip:[0,6]},titles:["Elasto-plastic analysis of a 2D von Mises material","Cohesive zone modelling of crack propagation","2D linear elasticity","Axisymmetric formulation for elastic structures of revolution","Orthotropic linear elasticity","Modal analysis of an elastic structure","Periodic homogenization of linear elastic materials","Reissner-Mindlin plates","Reissner-Mindlin plate with a Discontinuous-Galerkin approach","Reissner-Mindlin plate with Quadrilaterals","Linear thermoelasticity (weak coupling)","Thermo-elastic evolution problem (full coupling)","Homogenization of heterogeneous materials","Welcome to Numerical tours of Computational Mechanics using FEniCS","Introduction","Linear problems in solid mechanics","Nonlinear problems in solid mechanics","Tips and Tricks"],titleterms:{about:14,analysi:[0,5],approach:8,author:14,axisymmetr:3,cohes:1,comput:13,constitut:[0,2,4],coupl:[10,11],crack:1,definit:3,discontinu:8,discret:11,displac:6,effici:17,elast:[2,3,4,5,6,11],elasto:0,evolut:11,fenic:13,fluctuat:6,formul:[2,3,6,11],framework:6,full:11,galerkin:8,get:14,global:0,heterogen:12,homogen:[6,12],how:14,implement:[5,8,9],introduct:[0,2,4,5,6,8,9,10,11,14],linear:[2,4,6,10,15],main:6,materi:[0,6,12],mecan:10,mechan:[13,15,16],mindlin:[7,8,9],mise:0,modal:5,model:1,newton:0,nonlinear:16,numer:13,orthotrop:4,period:6,plastic:0,plate:[7,8,9],posit:[0,3,4,10,11],post:[0,2],problem:[0,3,4,10,11,15,16],procedur:0,process:[0,2],project:17,propag:1,quadratur:17,quadrilater:9,raphson:0,refer:[0,8,11],reissner:[7,8,9],relat:[0,2,4],resolut:[2,3,4,6,10,11],revolut:3,solid:[15,16],space:17,start:14,strain:3,structur:[3,5],thermal:10,thermo:11,thermoelast:10,time:11,tip:17,total:6,tour:13,trick:17,unknown:6,updat:0,using:13,valid:2,variat:[2,6,11],von:0,weak:10,welcom:13,what:14,zone:1}})
\ No newline at end of file
Search.setIndex({docnames:["demo/2D_plasticity/vonMises_plasticity.py","demo/cohesive_zone/cohesive_zone_crack","demo/elasticity/2D_elasticity.py","demo/elasticity/axisymmetric_elasticity","demo/elasticity/orthotropic_elasticity.py","demo/modal_analysis_dynamics/cantilever_modal.py","demo/periodic_homog_elas/periodic_homog_elas","demo/reissner_mindlin/reissner_mindlin","demo/reissner_mindlin/reissner_mindlin_dg.py","demo/reissner_mindlin/reissner_mindlin_quads.py","demo/thermoelasticity/thermoelasticity","demo/thermoelasticity/thermoelasticity_transient","homogenization","index","intro","linear_problems","nonlinear_problems","tips_and_tricks"],envversion:52,filenames:["demo/2D_plasticity/vonMises_plasticity.py.rst","demo/cohesive_zone/cohesive_zone_crack.ipynb","demo/elasticity/2D_elasticity.py.rst","demo/elasticity/axisymmetric_elasticity.ipynb","demo/elasticity/orthotropic_elasticity.py.rst","demo/modal_analysis_dynamics/cantilever_modal.py.rst","demo/periodic_homog_elas/periodic_homog_elas.ipynb","demo/reissner_mindlin/reissner_mindlin.rst","demo/reissner_mindlin/reissner_mindlin_dg.py.rst","demo/reissner_mindlin/reissner_mindlin_quads.py.rst","demo/thermoelasticity/thermoelasticity.ipynb","demo/thermoelasticity/thermoelasticity_transient.ipynb","homogenization.rst","index.rst","intro.rst","linear_problems.rst","nonlinear_problems.rst","tips_and_tricks.rst"],objects:{},objnames:{},objtypes:{},terms:{"004578259190102c":[],"022675825638074e":1,"09e3":1,"0x7f0156e6fb10":[],"0x7f015b143d10":[],"0x7f04b23a7ad0":[],"0x7f04b6683d10":[],"0x7f197a372390":[],"0x7f197e644d10":[],"0x7f1a33ddbad0":[],"0x7f1a3698dd10":[],"0x7f1b5d860f10":[],"0x7f1b61f525d0":[],"0x7f1bce3d8f50":[],"0x7f1bd3bd8d10":[],"0x7f2368be1790":[],"0x7f236ceb3cd0":[],"0x7f47da9b4c50":[],"0x7f47dee87e90":[],"0x7f47df3a5bd0":[],"0x7f47df6b5650":[],"0x7f5519b883d0":[],"0x7f551de5fd10":[],"0x7f56079fb990":[],"0x7f560bcd7d10":[],"0x7f573f67dc90":[],"0x7f5743951d10":[],"0x7f588a997390":1,"0x7f588f0be330":1,"0x7f5e33f46950":[],"0x7f5e38224d10":[],"0x7f6070d88e50":[],"0x7f70c74b7b10":[],"0x7f70cb791d10":[],"0x7f73d8b17450":[],"0x7f73dcde8d10":[],"0x7f75b1084d90":[],"0x7f75b62d0650":[],"0x7f825fc0b7d0":[],"0x7f8263edcd10":[],"0x7f8287f5ec50":[],"0x7f828ab12d10":[],"0x7f828f5be950":[],"0x7f8293891d10":[],"0x7f8673c447d0":[],"0x7f8677f1bd10":[],"0x7f9200cdea10":[],"0x7f9203890d10":[],"0x7f9487a074d0":[],"0x7f948bcd6d10":[],"0x7f963731c950":[],"0x7f963b5efd10":[],"0x7f97974bf9d0":[],"0x7f979b791d10":[],"0x7f990ec0acd0":[],"0x7f9912ee0d10":[],"0x7f9c84c16950":[],"0x7f9c88ef6d10":[],"0x7f9d28e37250":[],"0x7f9d2d10ad10":[],"0x7fa14f006c10":[],"0x7fa1532dbd10":[],"0x7fa15fd09ad0":[],"0x7fa163fe0d10":[],"0x7fa19d2f60d0":[],"0x7fa1a15cacd0":[],"0x7fa46c4b2bd0":[],"0x7fa4717bec10":[],"0x7fc6a6d0ac10":[],"0x7fc6aafdfd10":[],"0x7fcf7497fa50":[],"0x7fcf78812dd0":[],"0x7fcf7c17aed0":[],"0x7fd089cca3d0":[],"0x7fd08df9ed10":[],"0x7fd15f469a10":[],"0x7fd16201dd10":[],"0x7fd3ea4757d0":[],"0x7fd3eef16c10":[],"0x7fdc1bc87950":[],"0x7fdc1ff5ccd0":[],"0x7ff787ea8ad0":[],"1e10":1,"1e3":[2,8,9,10],"1e5":[2,3,5],"210e3":6,"237e":11,"265319087e":[8,9],"2d_elast":2,"2dlinearelast":[],"2nd":4,"2x2":[2,9],"3195907205498413e":1,"31e":11,"357114987097635e":1,"3x3":[4,9],"4th":0,"50e3":[6,10],"6235f10e1e05":[],"6x6":4,"70e3":[0,11],"733587984695249e":1,"78bbf88282cd":1,"81e":10,"910e":11,"boolean":4,"case":[0,2,3,4,5,6,10,14],"chauss\u00e9":14,"class":[1,3,4,6],"default":[0,1,5],"export":[0,2,5,8,9],"final":[0,3,11],"float":[0,2,3,8,9],"function":[0,1,2,3,4,5,6,8,9,10,11,17],"import":[0,1,2,3,4,5,6,8,9,10,11,14],"int":5,"lam\u00e9":[2,10,11],"long":11,"new":0,"return":[0,1,2,3,4,5,6,8,9,10,11,17],"static":11,"transient":[10,11],"true":[0,1,2,5,6,8,9,11],"while":[0,10],AND:6,BCs:11,Eps:6,For:[0,2,3,6,8,9,11,17],Its:10,NOT:6,One:[2,11],Res:0,That:1,The:[0,1,2,3,4,5,6,8,9,10,11,14],These:[0,11,14],Using:[2,11],With:5,__future__:[0,2,3,6,8,9,10,11],__init__:[1,6],_init_conveni:1,_init_from_ufl:1,_thermoelasticityevolut:[],a_form:1,a_newton:0,a_proj:[0,17],a_tensor:5,about:13,abs:[0,1],absolut:11,absolute_toler:1,account:[0,10],across:8,act:10,add:[8,11],added:10,adding:6,addit:[3,11],adopt:[0,11],advis:14,after:[0,5],against:[2,5,8,9],algorithm:[0,11],all:[3,5,8,11],allow:6,along:[3,5,11,14],alpha:[5,10,11],also:[0,2,3,4,5,6,8,10,11,14],altern:3,aluminium:11,amount:6,amplifi:2,analysi:[2,11,13,15,16],analyt:[0,2,4,5,8,9],ani:[0,2,10],anoth:0,app:0,appar:6,appear:11,append:0,appli:[0,3,4,5,8,11],approach:[7,11,13],appropri:[0,2,11],approxim:[5,11],arg:1,argument:[1,5],aris:[3,8],around:[3,11],arrai:[6,11],array_str:6,articl:14,as_3d_tensor:0,as_matrix:4,as_tensor:[0,3,4,8,9],as_vector:[0,1,4,6,8,9],ask:5,assembl:[0,1,5,6],assemble_system:[0,5],assert:6,assign:[0,1,2,5,6,8,9,10,11],associ:[0,3,5,6],assum:[3,4,10,11,14],attilio:0,author:13,auxiliari:6,avail:[6,14],averag:6,avg:[1,8],avoid:2,axi:[3,5,11],axial:3,axisymmetr:[13,15],axisymmetric_elast:3,b_proj:[0,17],b_tensor:5,back:[0,5],base:[2,6],basic:14,bc1:11,bc2:11,bc3:11,bcs:[3,11],bct:10,bcu:10,beam:[2,5],becaus:[0,6,8,9,10,11],been:[3,5,6,11,14],befor:[0,10],behavior:[6,9],behaviour:6,being:[2,3,4,11],below:[0,3,11],bend:[5,9],bending_mo:[8,9],bernoulli:2,beta:[0,1],beta_:0,between:[0,2,4,5,6,17],bilinear:[3,6,10,11],bitbucket:0,bleyer2018numericaltour:14,bleyer:14,bon2014:0,bonnet:0,book:0,bool:6,border:[6,8,9],both:[0,3,6,9,10,11],bottom:[0,3,4,5,6,10,11],boundari:[0,3,4,5,6,8,9,10,11],boxmesh:5,bug:0,build:10,bulk_energi:1,cach:17,calcul:11,call:[1,2,5],can:[0,1,2,3,4,5,6,8,9,10,11,14,17],cancel:3,cantilev:[2,5],cantilever_mod:5,cell:[0,6,9],celltyp:9,cellvolum:[1,8],chang:[2,6,10,11],chapter:0,check:[0,6,11],choic:[0,2],chom:6,choos:2,chosen:[8,9],christian:0,circl:[1,3,4,11],circular:[4,6,11],cite:14,clamp:[3,5,8,9,10],classic:[0,3,5,6],close:5,cma:8,cnr:14,code:[0,2,6,11],coeffici:[2,5,10,11],cohesive_zone_crack:1,coincid:4,collaps:0,collect:[],color:4,colorbar:[1,4,6,10,11],com:[],comet:14,command:14,compar:[2,5,8,9],comparison:5,compil:[0,1],complet:[0,6,10,11],complex:[0,5],complianc:4,compon:[0,2,3,4,6,11],compress:1,comput:[0,2,4,5,6,8,10,11,14],concern:0,concret:[],condit:[0,2,3,4,5,6,8,9,11],conduct:[10,11],configur:[9,11],confus:2,consid:[0,2,3,4,5,6,9,10,11,14],consist:[0,4,5,6,11],consitut:0,constant:[0,1,2,3,4,5,6,8,9,10,11],constitut:[5,6,9,10,11],constrained_domain:6,constraint:6,construct:[6,17],constructor:11,contact:3,contain:[0,4],content:[7,12,13,15,16],continu:[0,2,8,9],continuum:[2,5,14],contour:10,contrari:[0,4],contribut:[8,9],control:[],converg:[0,5,9],convert:0,coordin:[3,6,9,11],corner:6,correct:[0,9],corrector:0,correpond:4,correspnond:6,correspond:[0,1,2,3,4,5,6,8,9,10,11],correspons:5,cos:5,cosh:5,could:[0,3,4,10,11],counterpart:3,coupl:[13,15,17],cover:14,cpp:1,creat:9,criss:[2,9],criterion:0,cross:[2,3,9,10],cumul:0,current:[0,10,11,14],curv:[0,8,9],custom:[0,9],cylind:[0,3],d2_total_energi:1,d658f792d93a:[],d_total_energi:1,damag:1,david:8,deactiv:10,deal:[0,3,6],decompos:3,deduc:6,def:[0,1,2,3,4,5,6,8,9,10,11,17],defin:[0,2,3,4,5,6,8,9,10,11],definit:[5,6,11],deflect:[2,8,9],deform:[0,2,6],deg:[9,17],deg_stress:0,deg_u:0,degre:[0,1,2,3,5,6,8,9,11],delta:11,delta_0n:1,delta_0t:1,delta_t:10,demo:[2,5,9,14],denot:3,densiti:[2,4,5,11],dep:0,depend:[6,10],deprec:[0,11],deriv:[0,1,11],des:14,describ:[2,10],detail:[0,8,11],determin:0,dev:0,deviator:0,did:0,diff:11,differ:[0,2,3,4,6,10,14],dim:[0,5],dimens:[2,3,4,6,10],dimension:[0,3],direct:4,directli:0,dirichlet:11,dirichletbc:[0,1,2,3,4,5,8,9,10,11],disabl:0,discontinu:[7,13],discret:[0,6,8],discuss:10,displac:[0,1,2,3,4,10,11],dist:1,distanc:11,distribut:[2,14],div:[],divid:[8,9],document:14,doe:[0,6,9],doi:[8,11,14],doing:[],dolfin:[1,3,6,10,11],domain:[1,2,3,4,6,10,11],don:10,done:0,dot:[0,1,4,5,6,8,9,10,11],dp_:0,drive:0,dtheta:8,dthole:11,dti:11,duboi:11,due:[0,3,6,10],dummi:5,dure:0,dx_shear:9,dxm:0,dynam:5,e_hom:6,each:[0,5,6,11],earlier:0,easi:6,easier:5,easili:6,ecol:14,educ:0,effect:11,effective_open:1,effici:[0,13],eigenfrequ:5,eigenmod:5,eigenpair:5,eigensolv:5,eigenstrain:[6,10],eigenvalu:5,eigenvector:5,either:[0,2,4,10],elast:[0,9,10,12,13,15],elasticity_result:2,elasto:[13,16],element:[0,2,6,8,9,11,14,17],elementari:6,elif:[1,6],els:[0,1,5,6],email:14,embed:[0,6],enabl:0,energi:9,engin:[2,4,8,11],enough:0,enpc:14,ensur:[0,4,5,6],entropi:11,enumer:[0,1,6,11],eps:[0,1,2,3,4,5,6,8,9,10,11],eps_el:0,eps_voigt:6,equal:6,equat:[0,5,8,9,10,11],equilibrium:[0,6,11],equival:[0,5,6,10],error:6,establish:0,euler:[2,11],evalu:[0,2,9],even:0,eventu:11,evolut:[0,10,13,15],exact:[3,5],exactli:[6,11],exampl:[0,2,4,9,14],except:[3,6],exclud:0,exhibit:9,exi:6,exp:1,expans:[0,10,11],expect:11,explicitli:[0,3],exploit:3,exploratori:14,exponenti:11,expr:11,express:[0,1,2,3,6,10,11],extens:[2,4],exterior:[3,4],extern:[0,3,8,10,11],extract:[5,6,10,11],exx:6,eyi:6,f_ela:0,f_ext:0,fab:1,facet:[0,1,3,4,6,8,11],facet_project:1,facetarea:1,facetnorm:[0,1,3,8],fact:[0,11],factor:[0,4,9,17],fall:0,falpha:5,familiar:6,far91:11,farhat:11,fashion:0,faster:17,featur:6,fem:0,fenic:[0,2,3,4,5,6,8,9,10,11,14],fenicsproject:14,ffc:[0,1],field:[0,2,3,8,9,10,11],fig_siz:[],figsiz:[],figur:[3,6,10,11],file:[0,1,2,3,4,5,6,8,9,10,11],file_result:[0,2,5,8,9],find:[0,2,5,6,8,9,14],finit:[0,2,6,8,11,14],finiteel:[0,1,8,9,11],first:[0,2,3,5,6,9,10,11,14],fix:[2,3],flush_output:[0,2,5,8,9],flux:11,follow:[0,2,3,4,5,6,8,9,10,11,14],fontsiz:4,forc:[0,1,3,9,10,11],form:[0,3,4,5,6,8,10,11],form_compil:0,form_compiler_paramet:0,format:[0,2,3,5,6,11],formul:[8,10,13,15],found:[0,2,8],four:5,fourier:11,frame:4,framework:[],frangi:0,free:11,freedom:6,freq_3d:5,freq_beam:5,frequenc:5,from:[0,1,2,3,4,5,6,8,9,10,11,14],full:[2,3,8,10,13,14,15],fulli:[3,5,9,10,11],functions_share_mesh:[0,2,5,8,9],functionspac:[0,1,5,6,8,9,10,11],fundament:5,gain:0,galerkin:[7,13],gamma:1,gauss:[0,9],gci:1,gcii:1,gen_hermitian:5,gener:[0,2,4,5,6,9,10,11],generate_mesh:[1,3,4,11],geometr:[1,2],geometri:[5,10],geometric_dimens:5,get:[8,13],get_eigenpair:5,get_loc:[1,9],gitlab:14,given:[0,2,3,4,5,6,10,11],global:[4,17],gmsh:[0,6],goal:6,got:1,grad:[0,1,2,4,5,6,8,9,10,11],gradient:[2,11],gradual:11,grid:9,guess:5,gxy:4,h_avg:8,han2011:8,hand:[5,10,11],handl:0,hansbo:8,harden:0,has:[2,6,11],have:[0,2,3,4,5,6,10,11,14],heat:[10,11],height:6,heintz:8,help:14,hemispher:3,henc:[0,2,6,11],here:[0,2,3,4,5,6,8,10,11],hermitian:5,hesit:14,heterogen:[6,13],hexag_incl:6,hexag_incl_facet_region:6,hexag_incl_physical_region:6,hexagon:6,hill:0,hole:[4,11],hollow:[0,3],homogen:[9,10,13],hood:0,horizont:[6,10],how:[2,4,6,13],howev:[0,3,6,9,11],http:[0,8,11,14],i_bend:5,ident:[0,1,2,3,5,6,10,11],ident_zero:1,ifsttar:14,illustr:14,implement:[0,2,3,4,6,10,11],implicit:11,impos:[0,2,3,6,8],improv:5,includ:[0,6],inclus:6,incompress:0,increas:[0,10,11],increment:[0,11],inde:[0,3,6,11],induc:0,inerti:11,inertia:5,infinit:11,influenc:10,inform:0,initi:[0,2,5,6,10,11],inject:2,inlin:1,inner:[0,1,2,3,4,5,6,8,9,10,11,17],inner_boundari:11,input:1,insid:[0,1,3,4,6],instal:14,instanc:[4,11],instant:1,instead:[0,5,6,9,11],instruct:14,integr:[0,3,4,8,9],interest:[0,14],interfac:14,interfacial_energi:1,intern:[0,8,10],interpol:[0,1,2,8,9,11],interv:3,intrins:[2,4],introduc:[5,6,10,14],introduct:13,inv:4,invari:3,invers:4,invert:[4,5],investig:[3,14],invol:8,involv:[0,3],inward:3,ipynb:[1,3,6,10,11],ipython:1,irrespect:2,isotrop:[0,2,6,9,11],issu:[0,8,9],iter:0,its:[0,3,4,5,6,11],jeremi:14,jit:1,joint:14,jump:[1,8],jupyt:[1,3,6,10,11],just:[0,1,6,10,11],k_form:5,kappa:[1,11],keep:[0,6],keep_diagon:1,keyword:[1,5,6],kind:10,kirchhoff:[8,9],knowledg:14,known:10,kwarg:1,l_form:[1,5],laboratoir:14,lagrang:[2,4,5,6,8,9],lambda:[0,1,2,5],lame:5,larg:11,largest:5,larson:8,last:[0,1,4,5,10],later:[5,6,8,9,10,11],lateral_sid:10,latex:[],latter:10,law:[4,6,11],left:[0,1,2,3,4,5,6,10,11],legend:11,len:[1,6],length:5,let:[2,11],lhs:[1,6,10,11],lib:1,lie:11,lies:10,like:[0,2,4,10],lim:0,limit:[0,8,9,11],linalg:6,line2d:[],line:[8,11],linear:[0,3,8,9,11,12,13],linear_solv:6,linearelasticity2d:[],linearthermoelast:[],linewidth:3,link:6,linspac:[0,1,11],list:0,lmbda:[0,1,2,3,5,6,10,11],lmbda_hom:6,load:[0,1,2,3,4,6,8,9,10],load_step:0,local:[0,6,17],local_project:[0,17],localsolv:[0,17],lock:[0,8,9],logarithm:11,logspac:11,longer:0,look:[0,2,4,5,8,9,14],loop:[0,11],love:9,m_form:5,macro_strain:6,macroscop:6,mai:[1,11],main:10,make:[0,11],mani:[14,17],map:[0,6],marc:0,mark:[1,3,4],mass:[5,11],mat:8,match:[0,6],materi:[2,3,4,5,8,9,11,13,16],material_paramet:6,math:5,matplotlib:[0,1,3,4,6,10,11],matric:[4,5],matrix:[0,1,2,4,5,6],maxim:2,maximum:1,maximum_iter:1,mcgraw:0,mean:1,measur:[0,1,3,4,6,8],mech_form:11,mechan:[0,2,6,8,10,11,14],medium:[2,6],mesh:[0,1,2,3,4,5,6,8,9,10,11],meshfunct:[0,1,3,4,6,8],messag:0,metadata:[0,1,9,17],method:[0,1,8,11],microscop:6,microstructur:6,middl:8,min:9,mindlin:13,minu:4,mise:[13,16],mitig:0,mix:[10,11],mixedel:[8,9,11],mixedfunctionspac:11,modal:[2,13,15],modal_analysi:5,modalanalysi:[],mode:[2,3,4,5,6,10],model:[2,8],modif:11,modul:[1,4,5,11],moduli:[4,6],modulu:[0,2,4,6],moment:6,monitor:0,monolith:11,more:[0,11,14],most:1,mpa:10,mshr:[1,3,4,6,10,11],mu_hom:6,much:[5,17],multipl:2,multipli:[0,6],mump:0,must:[0,2,6,11],n_eig:5,n_ela:0,n_elas_:0,nabla:[],name:[0,1,2,3,4,5,8,9,10],nameerror:[],national:14,natur:[0,2,11],navier:14,ncol:11,need:[0,2,3,4,8,10,11],neglect:11,neumann:[4,11],new_sig:0,newton_solv:1,next:[5,11],nincr:[0,1,11],niter:0,nitermax:0,node:11,non:[0,11],none:0,nonlinear:[0,5,10,13],nonlinearvariationalproblem:1,nonlinearvariationalsolv:1,norm:[0,1,6],normal:[0,3],notat:[0,2,4],note:[0,2,3,4,5,6,9,10,11],notebook:[1,3,6,10,11],now:[0,2,4,5,6,9,10,11],nphase:6,nre:0,nres0:0,nu_hom:6,num:6,number:[0,5,6,14],numer:[2,3,4,5,6,14],numpi:[0,1,4,5,6,11],nur:6,nuxi:4,object:1,observ:0,obtain:[0,1,2,3,4,5,6,8,9,10,11,14],occur:0,offset:6,old:0,old_p:0,old_sig:0,older:[0,14],omega:5,on_boundari:[1,2,3,4,5,6,8,9,10,11],onc:0,one:[2,5,6,8,9,11],ones:5,onli:[0,2,3,4,6,10],onto:[0,2,6],open:1,oper:[0,2,4],opertor:4,opposit:6,optim:[0,5],option:6,order:[0,2,4,10],org:[0,8,11,14],origin:5,orthotrop:[2,13,15],orthotropi:4,orthotropic_elast:4,other:[5,11,14],otherwis:[0,11],out:[0,1,2,11],outer:[1,3,11],output:[0,2],over:[6,11,14],overal:6,p_avg:0,packag:1,pair:6,parallel:2,parallelogram:6,paramet:[0,1,2,4,5,6,8,9,10,11],paraview:2,park:11,part:[0,2,3,4,5,6,8],particular:14,pattern:6,pelerin:11,penalti:1,per:[8,9,11],perfectli:[0,6],perfor:[4,11],perform:[0,5,6,17],period:[12,13],periodic_elas_homog:[],periodic_homog_ela:6,periodicboundari:6,perman:10,perturb:9,peter:8,petsc:5,petscmatrix:5,petscvector:5,phase:[0,6,10],phenomenon:0,piecewis:[0,2],pii:[],plane:[0,2,3,4,6,11],plane_stress:2,plastic:[13,16],plasticity_result:0,plate:[4,11,13],pleas:14,plot:[0,1,2,3,4,6,10,11],plt:[0,1,3,4,6,10,11],plu:8,point:[0,1,2,3,4,5,6,9,10,11],pointwis:2,poisson:[2,4,6,10,11],polycollect:[],polygon:[],polynomi:[2,8],pont:14,possess:[5,14],possibl:0,post:11,ppo:[0,1],pre:10,precis:6,predict:11,predictor:0,prefer:2,presenc:[6,10],present:[5,10],preserv:5,pressur:[0,3],prestress:2,pretti:3,previou:[0,3,5,6,11],previous:0,principl:[2,3,11],print:[0,1,2,3,5,6,8,9,11],print_funct:[0,2,3,6,8,9,10,11],prm:1,problem:[1,5,6,13],problem_typ:5,program:[5,8,9],progress:0,proj_sig:0,project:[0,1,2,8,9,13,14],properti:[3,6,8,11],provid:2,proxi:1,publish:14,pure:[3,6],purpos:17,pvd:2,pyc:1,pyplot:[0,1,3,4,6,10,11],python2:1,python:[1,2,3,6,10,11,14],q_lim:0,quad:9,quad_schem:[0,1],quadrangl:9,quadrat:[0,9],quadratur:[0,1,9,13],quadrature_degre:[0,1,9,17],quadrature_schem:0,quadraturerepresentationdeprecationwarn:0,quadrilater:[7,8,13],quantiti:0,quarter:[0,3,4,11],quasi:[6,11],quit:[0,10,11],radial:3,radiu:[0,3,4,6],rang:[5,6],rate:0,ratio:6,ration:4,raw:[],rcparam:[],reach:11,read:[2,3,6,11],reader:14,readili:6,real:5,reaseon:6,reason:0,reassembl:0,recal:2,recent:1,rect:3,rectangl:[1,3,4,11],rectanglemesh:[2,10],rectangular:[2,5,10],redefin:0,reduc:[3,9],ref:[],refer:[],refin:0,reflect:14,reformul:[3,6],regard:10,regim:10,region:[10,11],regular:1,rei:0,reissner:13,reissner_mindlin_dg:8,reissner_mindlin_quad:9,relat:[3,5,6,9,10,11],relationship:6,relative_toler:1,relev:[5,8,9,11],remain:[3,10],remark:6,remov:[8,9],renorm:5,replac:[1,11],repres:[0,3,4,5,6],represent:[0,3,4],reproduc:0,requir:[0,4,6],res:[0,10],research:14,residu:[0,10],resolut:[],resolv:0,resort:[10,11],resp:[0,3,11],respect:[0,3,5,6,10],respons:0,rest:3,restor:0,restrict:1,result:[0,3,5,6,10],revert:0,revisit:14,revolut:[13,15],rho:[5,11],rho_g:[2,10],rhs:[1,6,10,11],right:[1,4,5,6,10,11],rm_dg_result:8,rm_result:9,root:5,rotat:[3,8,9],rule:9,sai:11,same:[2,8,11],save:11,scalar:0,scale:[9,11],scheme:[0,11],scienc:[],sciencedirect:[],scipi:5,script:[1,3,6,10,11,14],second:[3,4,6,11],section:[3,5,11],see:[0,11],seealso:[],seem:6,seen:[],segment:11,select:9,self:[1,2,3,4,6,10],separ:10,set:[0,4,5,6,10,14],set_al:[1,3,4,8],set_subdomain:[],shared_ptr:1,shear:[4,6,8,9],shear_forc:[8,9],shear_strain:[8,9],shift:5,should:[2,4,5,6,14],show:[0,1,2,3,4,6,10,11],shown:6,side:[3,5,8,9,10,11],sig0:0,sig:[0,2],sig_:0,sig_ela:0,sig_eq:0,sig_max:1,sig_n:0,sig_old:0,sigma:[0,1,2,3,4,5,6,10,11],sigma_:[4,11],sigma_tang:0,similar:[3,6,9],similarli:11,simpl:0,simplefilt:0,sinc:[0,3,5,10,11],singl:0,situat:10,size:[3,5],size_t:[0,1,3,4,6,8],skew:[6,9],slepc:5,slepceigensolv:5,slight:11,small:[2,3],smallest:5,smooth:3,softwar:[6,14],solid:[0,3,5,6,13,14],sollicit:6,solut:[2,3,5,6,8,9,10,11],solv:[0,1,2,3,4,5,6,8,9,10,11],solve_local_rh:[0,17],solver:[0,1,17],solver_paramet:6,some:[0,1,3,6,9,14],sourc:[0,6,10,11],space:[0,2,4,6,13],spatial:3,spatialcoordin:3,specif:[3,6,11],specifi:[0,5,11],specifii:0,spectral:5,spectral_shift:5,spectral_transform:5,spectrum:5,sphere:3,split:[8,9,11],sqrt:[0,1,3,5,6],squar:[4,8,9,11],sri:9,stabil:[1,8],stabl:11,stagger:11,standard:[0,3,5,6,8,10,14],start:13,state:[0,2,10],std:1,steadi:10,step:[0,11],stiff:[5,6,9],stoke:11,store:[0,6],str:[0,1,5,11],straightforward:[2,3],strain2voigt:[4,8,9],strain:[0,2,4,6,10,11],strength:0,stress2voigt:6,stress:[0,2,4,6,10,11],stricli:6,strong:[5,9],structur:[0,2,9,13,14,15],sub:[0,3,4,8,11],subdomain:[1,3,4,6],subdomain_data:[1,3,6,8],sube:[],subject:10,suboptim:0,subsequ:2,subspac:11,suffic:[0,9],suggest:6,suit:2,suitabl:2,sum:6,support:5,suppress_smal:[],surfac:[0,3],swig:1,sym:[0,1,2,3,4,5,6,8,9,10,11],symmetr:[2,4,6],symmetri:[0,3,4,5,9,11],syntax:[10,11],system:[0,5],t_re:11,tackl:[0,4],take:[1,5,10],tangent:0,target:[],tau_max:1,tell:0,temperatur:[10,11],tensor:[0,2,3,4,5,6],tensorfunctionspac:2,tensori:4,term:[0,2,3,4,6,8,10,11],testfunct:[0,1,2,3,4,5,6,8,9,10,11,17],text:[],than:17,thei:5,them:14,theori:[2,5,6],therefor:[0,3,4,5,6,10,11],therm_form:11,thermal:11,thermo:[13,15],thermoelast:[11,13,15],thermoelasticity_transi:11,thermomechan:[10,11],theta:[3,8,9],theta_:8,thi:[0,1,2,3,4,5,6,8,9,10,11,14,17],thick:[8,9],thick_cylind:0,thick_cylinder_facet_region:0,thin:[8,9],those:11,through:[11,14],throughout:[0,10],thu:[0,6,10],time:[0,1,17],tip:13,titl:[4,6,10,11,14],tol:0,told:11,toler:[0,11],toolbox:14,top:[4,5,6,10],topand:[],topic:14,total:[0,9,11],total_energi:1,tour:[2,3,4,6,10,11,14],traceback:1,track:0,traction:[3,4],tradtion:2,transform:5,translat:[2,6],transvers:[8,9],treat:[10,11],tri:1,trial:0,trialfunct:[0,1,2,3,4,5,6,8,9,10,11,17],triangl:[0,8],trick:13,tricontour:1,tricontourset:1,truli:6,tutori:[11,14],twice:5,two:[3,4,5,11],tying:6,type:[1,5],type_quadrilater:9,typeerror:1,typic:11,ufl_cel:[0,1,8,9,11],uflac:0,umr:14,uncondition:11,uncoupl:10,under:[0,3,9],undocu:14,unexpect:1,uniaxi:[0,6],uniform:[0,3,4,8,9,10,11],uniformli:2,unit:[6,8,9,11,14],unitsquaremesh:[8,9],unknown:[10,11],unkown:3,unkwown:11,until:0,uold:11,updat:11,upon:[6,10],use:[0,4,6,10,11,14],used:[0,2,4,6,10,11],useful:[0,9,14],user:8,uses:[0,8,9],usetex:[],using:[0,2,4,5,6,8,9,10,11,14,17],usr:1,v_bd:1,v_cont:1,v_d:1,v_u:1,valu:[0,2,5,6,9,11],vanish:0,variabl:[0,2,3,6],variat:[0,4,5,8,10],varieti:14,variou:0,vector:[0,1,2,3,4,5,6,9],vectorel:[0,8,9,11],vectorfunctionspac:[0,1,2,3,4,5,6,10],vectori:[2,4],veri:6,verifi:[0,6,11],versatil:14,version:[0,6,11,14],vertic:[3,4,6,10],virtual:[2,3,11],vizualis:2,voigt2stress:[4,8,9],voigt:4,vol:6,volum:[6,11],volumetr:0,von:[13,16],vonmises_plast:0,vsig:2,vte:11,vtk:2,vtu:2,vue:11,w0e:[0,1],w_max:1,wai:2,wait:11,warn:0,weak:[5,11,13,15],websit:14,weight:[2,10],welcom:14,well:[0,4,5],were:9,what:[0,13],when:[0,6,10],where:[0,2,3,5,6,10,11],wherea:[0,3,8,10],which:[0,2,3,4,5,6,9,10,11],wide:[6,14],width:6,wint:10,wise:17,without:[0,8,10,11],work:[2,3,10,11,14],would:[0,6,11],write:[0,2,4,8,9,10],written:[4,14],www:[],xdmf:[0,2,5,8,9],xdmffile:[0,2,5,8,9],xlabel:[0,11],xlim:11,xml:[0,6],year:14,yield:[0,4],ylabel:[0,11],ylim:11,you:[6,14],young:[2,4,6],your:14,zenodo:14,zero:[0,1,6,8,11],zip:[0,6]},titles:["Elasto-plastic analysis of a 2D von Mises material","Cohesive zone modelling of crack propagation","2D linear elasticity","Axisymmetric formulation for elastic structures of revolution","Orthotropic linear elasticity","Modal analysis of an elastic structure","Periodic homogenization of linear elastic materials","Reissner-Mindlin plates","Reissner-Mindlin plate with a Discontinuous-Galerkin approach","Reissner-Mindlin plate with Quadrilaterals","Linear thermoelasticity (weak coupling)","Thermo-elastic evolution problem (full coupling)","Homogenization of heterogeneous materials","Welcome to Numerical tours of Computational Mechanics using FEniCS","Introduction","Linear problems in solid mechanics","Nonlinear problems in solid mechanics","Tips and Tricks"],titleterms:{about:14,analysi:[0,5],approach:8,author:14,axisymmetr:3,cohes:1,comput:13,constitut:[0,2,4],coupl:[10,11],crack:1,definit:3,discontinu:8,discret:11,displac:6,effici:17,elast:[2,3,4,5,6,11],elasto:0,evolut:11,fenic:13,fluctuat:6,formul:[2,3,6,11],framework:6,full:11,galerkin:8,get:14,global:0,heterogen:12,homogen:[6,12],how:14,implement:[5,8,9],introduct:[0,2,4,5,6,8,9,10,11,14],linear:[2,4,6,10,15],main:6,materi:[0,6,12],mecan:10,mechan:[13,15,16],mindlin:[7,8,9],mise:0,modal:5,model:1,newton:0,nonlinear:16,numer:13,orthotrop:4,period:6,plastic:0,plate:[7,8,9],posit:[0,3,4,10,11],post:[0,2],problem:[0,3,4,10,11,15,16],procedur:0,process:[0,2],project:17,propag:1,quadratur:17,quadrilater:9,raphson:0,refer:[0,8,11],reissner:[7,8,9],relat:[0,2,4],resolut:[2,3,4,6,10,11],revolut:3,solid:[15,16],space:17,start:14,strain:3,structur:[3,5],thermal:10,thermo:11,thermoelast:10,time:11,tip:17,total:6,tour:13,trick:17,unknown:6,updat:0,using:13,valid:2,variat:[2,6,11],von:0,weak:10,welcom:13,what:14,zone:1}})
\ No newline at end of file
......@@ -22,6 +22,18 @@ illustrating the versatility of FEniCS.
The full set of demos can be obtained from the *COmputational MEchanics Toolbox* (COMET) available at
https://gitlab.enpc.fr/jeremy.bleyer/comet-fenics.
If you find these demos useful for your research work, please consider citing them using the following
Zenodo DOI https://doi.org/10.5281/zenodo.1287832
.. code-block:: none
@article{bleyer2018numericaltours,
title={Numerical Tours of Computational Mechanics with FEniCS},
DOI={10.5281/zenodo.1287832},
publisher={Zenodo},
author={Jeremy Bleyer},
year={2018}}
-----------------------
How do I get started ?
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment