Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
C
comet-fenics
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
1
Issues
1
List
Boards
Labels
Service Desk
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Operations
Operations
Incidents
Environments
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Francisco Ramírez
comet-fenics
Commits
8487436e
Commit
8487436e
authored
Apr 17, 2018
by
Jeremy BLEYER
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Dynamic modal analysis example
parent
98142cc2
Changes
7
Hide whitespace changes
Inline
Side-by-side
Showing
7 changed files
with
203 additions
and
1 deletion
+203
-1
doc/_static/logo_Navier.png
doc/_static/logo_Navier.png
+0
-0
doc/_static/logo_tutelles.png
doc/_static/logo_tutelles.png
+0
-0
doc/index.rst
doc/index.rst
+1
-0
doc/intro.rst
doc/intro.rst
+7
-0
doc/rstprocess.py
doc/rstprocess.py
+1
-1
examples/modal_analysis_dynamics/cantilever_modal.py.rst
examples/modal_analysis_dynamics/cantilever_modal.py.rst
+194
-0
examples/modal_analysis_dynamics/vibration_modes.gif
examples/modal_analysis_dynamics/vibration_modes.gif
+0
-0
No files found.
doc/_static/logo_Navier.png
0 → 100644
View file @
8487436e
24.5 KB
doc/_static/logo_tutelles.png
0 → 100644
View file @
8487436e
193 KB
doc/index.rst
View file @
8487436e
...
@@ -13,6 +13,7 @@ Contents:
...
@@ -13,6 +13,7 @@ Contents:
intro
intro
2D_elasticity
2D_elasticity
demo/modal_analysis_dynamics/cantilever_modal.py.rst
demo/reissner_mindlin/reissner_mindlin.rst
demo/reissner_mindlin/reissner_mindlin.rst
...
...
doc/intro.rst
View file @
8487436e
...
@@ -48,6 +48,13 @@ in Solid and Structural Mechanics at `Laboratoire Navier <http://navier.enpc.fr>
...
@@ -48,6 +48,13 @@ in Solid and Structural Mechanics at `Laboratoire Navier <http://navier.enpc.fr>
a joint research unit of `Ecole Nationale des Ponts et Chaussées <http://www.enpc.fr>`_,
a joint research unit of `Ecole Nationale des Ponts et Chaussées <http://www.enpc.fr>`_,
`IFSTTAR <http://www.ifsttar.fr>`_ and `CNRS <http://www.cnrs.fr>`_ (UMR 8205).
`IFSTTAR <http://www.ifsttar.fr>`_ and `CNRS <http://www.cnrs.fr>`_ (UMR 8205).
.. image:: _static/logo_Navier.png
:scale: 8 %
:align: left
.. image:: _static/logo_tutelles.png
:scale: 20 %
:align: right
...
...
doc/rstprocess.py
View file @
8487436e
...
@@ -72,7 +72,7 @@ def process():
...
@@ -72,7 +72,7 @@ def process():
if
not
ret
==
0
:
if
not
ret
==
0
:
raise
RuntimeError
(
"Unable to convert rst file to a .py ({})"
.
format
(
f
))
raise
RuntimeError
(
"Unable to convert rst file to a .py ({})"
.
format
(
f
))
png_files
=
[
f
for
f
in
os
.
listdir
(
version_path
)
if
os
.
path
.
splitext
(
f
)[
1
]
==
".png"
]
png_files
=
[
f
for
f
in
os
.
listdir
(
version_path
)
if
os
.
path
.
splitext
(
f
)[
1
]
in
[
".png"
,
".gif"
]
]
for
f
in
png_files
:
for
f
in
png_files
:
source
=
os
.
path
.
join
(
version_path
,
f
)
source
=
os
.
path
.
join
(
version_path
,
f
)
print
(
"Copying {} to {}"
.
format
(
source
,
demo_dir
))
print
(
"Copying {} to {}"
.
format
(
source
,
demo_dir
))
...
...
examples/modal_analysis_dynamics/cantilever_modal.py.rst
0 → 100644
View file @
8487436e
.. _ModalAnalysis:
==========================================
Modal analysis of an elastic structure
==========================================
-------------
Introduction
-------------
This program performs a dynamic modal analysis of an elastic cantilever beam
represented by a 3D solid continuum. The eigenmodes are computed using the
**SLEPcEigensolver** and compared against an analytical solution of beam theory.
The corresponding file can be obtained from :download:`cantilever_modal.py`.
The first four eigenmodes of this demo will look as follows:
.. image:: vibration_modes.gif
:scale: 80 %
The first two fundamental modes are on top with bending along the weak axis (left) and along
the strong axis (right), the next two modes are at the bottom.
---------------
Implementation
---------------
After importing the relevant modules, the geometry of a beam of length :math:`L=20`
and rectangular section of size :math:`B\times H` with :math:`B=0.5, H=1` is first defined::
from fenics import *
import numpy as np
L, B, H = 20., 0.5, 1.
Nx = 200
Ny = int(B/L*Nx)+1
Nz = int(H/L*Nx)+1
mesh = BoxMesh(Point(0.,0.,0.),Point(L,B,H), Nx, Ny, Nz)
Material parameters and elastic constitutive relations are classical (here we
take :math:`\nu=0`) and we also introduce the material density :math:`\rho` for
later definition of the mass matrix::
E, nu = 1e5, 0.
rho = 1e-3
# Lame coefficient for constitutive relation
mu = E/2./(1+nu)
lmbda = E*nu/(1+nu)/(1-2*nu)
def eps(v):
return sym(grad(v))
def sigma(v):
dim = v.geometric_dimension()
return 2.0*mu*eps(v) + lmbda*tr(eps(v))*Identity(dim)
Standard FunctionSpace is defined and boundary conditions correspond to a
fully clamped support at :math:`x=0`::
V = VectorFunctionSpace(mesh, 'Lagrange', degree=1)
u_ = TrialFunction(V)
du = TestFunction(V)
def left(x, on_boundary):
return near(x[0],0.)
bc = DirichletBC(V, Constant((0.,0.,0.)), left)
The system stiffness matrix :math:`[K]` and mass matrix :math:`[M]` are
respectively obtained from assembling the corresponding variational forms::
k_form = inner(sigma(du),eps(u_))*dx
l_form = Constant(1.)*u_[0]*dx
K = PETScMatrix()
b = PETScVector()
assemble_system(k_form, l_form, bc, A_tensor=K, b_tensor=b)
m_form = rho*dot(du,u_)*dx
M = PETScMatrix()
assemble(m_form, tensor=M)
Matrices :math:`[K]` and :math:`[M]` are first defined as PETSc Matrix and
forms are assembled into it to ensure that they have the right type.
Note that boundary conditions have been applied to the stiffness matrix using
``assemble_system`` so as to preserve symmetry (a dummy ``l_form`` and right-hand side
vector have been introduced to call this function).
Modal dynamic analysis consists in solving the following generalized
eigenvalue problem :math:`[K]\{U\}=\lambda[M]\{U\}` where the eigenvalue
is related to the eigenfrequency :math:`\lambda=\omega^2`. This problem
can be solved using the ``SLEPcEigenSolver``. ::
eigensolver = SLEPcEigenSolver(K, M)
eigensolver.parameters['problem_type'] = 'gen_hermitian'
eigensolver.parameters["spectrum"] = "smallest real"
eigensolver.parameters['spectral_transform'] = 'shift-and-invert'
eigensolver.parameters['spectral_shift'] = 0.
The problem type is specified to be a generalized eigenvalue problem with
Hermitian matrices. By default, SLEPc computes the largest eigenvalues, here
we instead look for the smallest eigenvalues (they should all be real). To
improve convergence of the eigensolver for finding the smallest eigenvalues
(by default it computes the largest ones), a spectral transform is performed
using the keyword `shift-invert` i.e. the original problem is transformed into
an equivalent problem with eigenvalues given by :math:`\dfrac{1}{\lambda - \sigma}`
instead of :math:`\lambda` where :math:`\sigma` is the value of the spectral shift.
It is therefore much easier to compute eigenvalues close to :math:`\sigma` i.e.
close to :math:`\sigma = 0` in the present case. Eigenvalues are then
transformed back by SLEPc to their original value :math:`\lambda`.
We now ask SLEPc to extract the first 6 eigenvalues by calling its solve function
and extract the corresponding eigenpair (first two arguments of `get_eigenpair`
correspond to the real and complex part of the eigenvalue, the last two to the
real and complex part of the eigenvector)::
N_eig = 6 # number of eigenvalues
print "Computing %i first eigenvalues..." % N_eig
eigensolver.solve(N_eig)
# Exact solution computation
from scipy.optimize import root
from math import cos, cosh
falpha = lambda x: cos(x)*cosh(x)+1
alpha = lambda n: root(falpha, (2*n+1)*pi/2.)['x'][0]
# Set up file for exporting results
file_results = XDMFFile("modal_analysis.xdmf")
file_results.parameters["flush_output"] = True
file_results.parameters["functions_share_mesh"] = True
# Extraction
for i in range(N_eig):
# Extract eigenpair
r, c, rx, cx = eigensolver.get_eigenpair(i)
# 3D eigenfrequency
freq_3D = sqrt(r)/2/pi
# Beam eigenfrequency
if i % 2 == 0: # exact solution should correspond to weak axis bending
I_bend = H*B**3/12.
else: #exact solution should correspond to strong axis bending
I_bend = B*H**3/12.
freq_beam = alpha(i/2)**2*sqrt(E*I_bend/(rho*B*H*L**4))/2/pi
print("Solid FE: {0:8.5f} [Hz] Beam theory: {1:8.5f} [Hz]".format(freq_3D, freq_beam))
# Initialize function and assign eigenvector (renormalize by stiffness matrix)
eigenmode = Function(V,name="Eigenvector "+str(i))
eigenmode.vector()[:] = rx/omega
The beam analytical solution is obtained using the eigenfrequencies of a clamped
beam in bending given by :math:`\omega_n = \alpha_n^2\sqrt{\dfrac{EI}{\rho S L^4}}`
where :math:`S=BH` is the beam section, :math:`I` the bending inertia and
:math:`\alpha_n` is the solution of the following nonlinear equation:
.. math::
\cos(\alpha)\cosh(\alpha)+1 = 0
the solution of which can be well approximated by :math:`(2n+1)\pi/2` for :math:`n\geq 3`.
Since the beam possesses two bending axis, each solution to the previous equation is
associated to two frequencies with bending along the weak axis (:math:`I=I_{\text{weak}} = HB^3/12`)
and along the strong axis (:math:`I=I_{\text{strong}} = BH^3/12`). Since :math:`I_{\text{strong}} = 4I_{\text{weak}}`
for the considered numerical values, the strong axis bending frequency will be twice that corresponsing
to bending along the weak axis. The solution :math:`\alpha_n` are computed using the
``scipy.optimize.root`` function with initial guess given by :math:`(2n+1)\pi/2`.
With ``Nx=400``, we obtain the following comparison between the FE eigenfrequencies
and the beam theory eigenfrequencies :
===== ============= =================
Mode Eigenfrequencies
----- --------------------------------
# Solid FE [Hz] Beam theory [Hz]
===== ============= =================
1 2.04991 2.01925
2 4.04854 4.03850
3 12.81504 12.65443
4 25.12717 25.30886
5 35.74168 35.43277
6 66.94816 70.86554
===== ============= =================
examples/modal_analysis_dynamics/vibration_modes.gif
0 → 100644
View file @
8487436e
5.93 MB
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment