Reference.py 6.72 KB
Newer Older
Jeremy BLEYER's avatar
Jeremy BLEYER committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172



from dolfin import *
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter



#cf 'Contenu des fichiers' à propos de 'reference'
def reference(tabC,res1,c,ec,fr):
    #res=256
    k,ll,mm,nn=tabC.shape
    mesh = UnitSquareMesh(res1, res1, "crossed")

    class LocalC(UserExpression):
        def __init__(self, Cij, mesh):
            self.Cij = Cij
            self.Nx, self.Ny, a, b = Cij.shape
            assert a==3 and b==3, "Wrong shape"
            self.mesh = mesh
            UserExpression.__init__(self)
        def eval_cell(self, value, x, ufc_cell):
            p = Cell(mesh, ufc_cell.index).midpoint()
            i, j = int(p[0]*(self.Nx)), int(p[1]*(self.Ny))
            value[:] = self.Cij[j, i,:,:].flatten()
        
        def value_shape(self):
            return (3, 3)
    
    
    
#Ici on crée, à partir du tableau des tenseurs d'élasticité correspondant au domaine dont on veut calculer le Chom, un tableau Cv représentant le même Cn mais adapté à une résolution plus fine 'res'
    # Cv = np.array([[np.zeros((3,3)) for i in range(res)] for j in range(res)])
    # for i0 in range(k):
    #     for j0 in range(k):
    #         for i in range(int(i0*res/k),int((i0+1)*res/k)):
    #             for j in range (int(j0*res/k),int((j0+1)*res/k)):
    #                 Cv[i,j]=tabC[i0,j0]
                    
    # plt.imshow(tabC[:,:,0,0])
    # plt.show()
    # plt.close()
    # plt.imshow(Cv[:,:,0,0])
    # plt.show()
    # plt.close()
    
#Cvar est la transformation du tableau Cv en une fonction définie sur 'mesh'
    Cvar= LocalC(tabC,mesh)
    
    # class used to define the periodic boundary map
    class PeriodicBoundary(SubDomain):
        def __init__(self, vertices, tolerance=DOLFIN_EPS):
            """ vertices stores the coordinates of the 4 unit cell corners"""
            SubDomain.__init__(self, tolerance)
            self.tol = tolerance
            self.vv = vertices
            self.a1 = self.vv[1,:]-self.vv[0,:] # first vector generating periodicity
            self.a2 = self.vv[3,:]-self.vv[0,:] # second vector generating periodicity
            # check if UC vertices form indeed a parallelogram
            assert np.linalg.norm(self.vv[2, :]-self.vv[3, :] - self.a1) <= self.tol
            assert np.linalg.norm(self.vv[2, :]-self.vv[1, :] - self.a2) <= self.tol
    
        def inside(self, x, on_boundary):
            # return True if on left or bottom boundary AND NOT on one of the
            # bottom-right or top-left vertices
            return bool((near(x[0], self.vv[0,0] + x[1]*self.a2[0]/self.vv[3,1], self.tol) or
                        near(x[1], self.vv[0,1] + x[0]*self.a1[1]/self.vv[1,0], self.tol)) and
                        (not ((near(x[0], self.vv[1,0], self.tol) and near(x[1], self.vv[1,1], self.tol)) or
                        (near(x[0], self.vv[3,0], self.tol) and near(x[1], self.vv[3,1], self.tol)))) and on_boundary)
    
        def map(self, x, y):
            if near(x[0], self.vv[2,0], self.tol) and near(x[1], self.vv[2,1], self.tol): # if on top-right corner
                y[0] = x[0] - (self.a1[0]+self.a2[0])
                y[1] = x[1] - (self.a1[1]+self.a2[1])
            elif near(x[0], self.vv[1,0] + x[1]*self.a2[0]/self.vv[2,1], self.tol): # if on right boundary
                y[0] = x[0] - self.a1[0]
                y[1] = x[1] - self.a1[1]
            else:   # should be on top boundary
                y[0] = x[0] - self.a2[0]
                y[1] = x[1] - self.a2[1]
    
  

#la fonction reference_problem prend en argument C, donnant le tenseur d'élasticité en un point de 'mesh', et renvoie le Chom du domaine. k étant le nombre de phases différentes sur le domaine, qui correspond à la taille du tableau Cn pris en argument par la fonction 'reference'    
    def reference_problem(C, mesh,k):

        def eps(v):
            return as_vector([v[0].dx(0),
                            v[1].dx(1),
                            (v[0].dx(1)+v[1].dx(0))/sqrt(2)])
    
        def sigma(v, Eps):
            return dot(C, eps(v)+Eps)
        
    
        Ve = VectorElement("CG", mesh.ufl_cell(), 2)
        Re = VectorElement("R", mesh.ufl_cell(), 0)
        vertices = np.array([[0, 0], [1, 0], [1, 1], [0, 1]])
        W = FunctionSpace(mesh, MixedElement([Ve, Re]), constrained_domain=PeriodicBoundary(vertices, tolerance=1e-10))
        V = VectorFunctionSpace(mesh,'CG',degree=2,dim=3)
    
        v_,lamb_ = TestFunctions(W)
        dv, dlamb = TrialFunctions(W)
        w = Function(W)
    
        Eps = Constant((0,)*3)
        F = inner(sigma(dv, Eps), eps(v_))*dx
        a, L = lhs(F), rhs(F)
        a += dot(lamb_,dv)*dx + dot(dlamb,v_)*dx
    
        Chom = np.zeros((3, 3))
        for (j, case) in enumerate(["Exx", "Eyy", "Exy"]):
            ee = np.zeros((3,))
            ee[j] = 1
            Eps.assign(Constant(ee))
            solve(a == L, w, [])#, solver_parameters={"linear_solver": "bicgstab", "preconditioner":"ilu"})
            (v, lamb) = split(w)
            ffile = XDMFFile('c='+str(c)+'/ech='+str(ec)+'/frac='+str(fr)+'/Strain EF '+case+'.xdmf')
            ffile.parameters["functions_share_mesh"] = True
            vf = Function(V, name='Strain-'+case)
            vf.assign(project(eps(v),V))
            ffile.write(vf,0.)
            
            plt.figure()
            pp=plot(eps(v)[0])
            plt.colorbar(pp)
            plt.savefig('c='+str(c)+'/ech='+str(ec)+'/frac='+str(fr)+'/Aloc EF 1'+str(j+1)+'.pdf')
            #plt.show()
            plt.close()
            plt.figure()
            pp=plot(eps(v)[1])
            plt.colorbar(pp)
            plt.savefig('c='+str(c)+'/ech='+str(ec)+'/frac='+str(fr)+'/Aloc EF 2'+str(j+1)+'.pdf')
            #plt.show()
            plt.close()
            plt.figure()
            pp=plot(eps(v)[2])
            plt.colorbar(pp)
            plt.savefig('c='+str(c)+'/ech='+str(ec)+'/frac='+str(fr)+'/Aloc EF 3'+str(j+1)+'.pdf')
            #plt.show()
            plt.close()
            
            Sigma = np.zeros((3,))
            for kk in range(3):
                Sigma[kk] = assemble(sigma(v, Eps)[kk]*dx)
            Chom[j, :] = Sigma
            
        ffile.close()
        return Chom
        
    Chom = reference_problem(Cvar, mesh,k)
    CVoigt = np.array([[0., 0., 0.],
                [0., 0., 0.],
                [0., 0., 0.]])
    for i in range(k):
        for j in range(k):
            CVoigt=CVoigt+tabC[i,j]
            
    CVoigt=CVoigt/k/k
    
    print(Chom)
    return Chom,CVoigt