Commit ff873c92 by Jeremy BLEYER

### More work on multiphase model

parent fb4e7fea
 ... @@ -12,7 +12,7 @@ from ufl import diag ... @@ -12,7 +12,7 @@ from ufl import diag width = 1. width = 1. height = 1. height = 1. mesh = RectangleMesh(Point(0., 0.), Point(width, height), 20, 10) mesh = RectangleMesh(Point(0., 0.), Point(width, height), 10, 10) Ve = VectorElement("CG", mesh.ufl_cell(), 1) Ve = VectorElement("CG", mesh.ufl_cell(), 1) V = FunctionSpace(mesh, MixedElement([Ve, Ve])) V = FunctionSpace(mesh, MixedElement([Ve, Ve])) ... @@ -38,9 +38,17 @@ facets = MeshFunction("size_t", mesh, 1) ... @@ -38,9 +38,17 @@ facets = MeshFunction("size_t", mesh, 1) ds = Measure("ds", subdomain_data=facets) ds = Measure("ds", subdomain_data=facets) mat_prop = {"MatrixYoungModulus": 70e3, "MatrixPoissonRatio": 0.2, "FiberYoungModulus": 200e3, "FiberPoissonRatio": 0.3, "FiberVolumeFraction": 0.1, "Size": 0.1} material = mf.MFrontNonlinearMaterial("materials/src/libBehaviour.so", material = mf.MFrontNonlinearMaterial("materials/src/libBehaviour.so", "TwoPhasesGeneralizedElasticity", "MultiphaseModel", hypothesis="plane_strain") hypothesis="plane_strain", material_properties=mat_prop) problem = mf.MFrontNonlinearProblem(u, material, quadrature_degree=0) problem = mf.MFrontNonlinearProblem(u, material, quadrature_degree=0) problem.bc = bc problem.bc = bc ... @@ -50,12 +58,24 @@ problem.register_gradient("RelativeDisplacement", diag(u2-u1), symmetric=True) ... @@ -50,12 +58,24 @@ problem.register_gradient("RelativeDisplacement", diag(u2-u1), symmetric=True) problem.solve(u.vector()) problem.solve(u.vector()) u1 = u.sub(0, True) x = np.linspace(width/2, width, 21) u2 = u.sub(1, True) x = np.linspace(0, width, 100) import matplotlib.pyplot as plt import matplotlib.pyplot as plt plt.figure() plt.figure() plt.plot(x, np.array([u1(xi, height/2)[0] for xi in x]), label=r"\$u_x\$ (matrix)") plt.plot(x, np.array([u(xi, height/2)[0] for xi in x]), "ob", label=r"\$u_x\$ (matrix, size={})".format(mat_prop["Size"])) plt.plot(x, np.array([u2(xi, height/2)[0] for xi in x]), label=r"\$u_x\$ (inclusion)") plt.plot(x, np.array([u(xi, height/2)[2] for xi in x]), "or", label=r"\$u_x\$ (fiber, size={})".format(mat_prop["Size"])) # mat_prop["Size"] = 0.02 # problem2 = mf.MFrontNonlinearProblem(u, material, quadrature_degree=0) # problem2.bc = bc # problem2.register_gradient("MatrixStrain", sym(grad(u1)), symmetric=True) # problem2.register_gradient("InclusionStrain", sym(grad(u2)), symmetric=True) # problem2.register_gradient("RelativeDisplacement", diag(u2-u1), symmetric=True) # u = Function(V) # problem2.solve(u.vector()) # plt.plot(x, np.array([u(xi, height/2)[0] for xi in x]), "sb", markerfacecolor="None", label=r"\$u_x\$ (matrix, size={})".format(mat_prop["Size"])) # plt.plot(x, np.array([u(xi, height/2)[2] for xi in x]), "sr", markerfacecolor="None", label=r"\$u_x\$ (fiber, size={})".format(mat_prop["Size"])) plt.legend() plt.legend() plt.show() plt.show() \ No newline at end of file
 @DSL DefaultGenericBehaviour; @Behaviour MultiPhase; @Author Thomas Helfer; @Date 15/02/2019; @Gradient real eps1; @Flux real sig1; @Gradient real toto; @Flux real sig2; @Gradient real V; @Flux real I; // @AdditionalTangentOperatorBlock dsig1_deps1; @Parameter C11 = 10e3; @Parameter C12 = 5e-4; @Parameter C22 = 2e3; @Parameter kappa = 1e6; @Integrator{ sig1 = C11*(eps1+deps1); sig2 = C22*(toto+dtoto); I = kappa*V } // end of @Integrator @TangentOperator { //dj_ddgT = k * tmatrix::Id(); dsig1_ddeps1 = C11* Stensor4::Id(); } // end of @TangentOperator
 @DSL DefaultGenericBehaviour; @Behaviour MultiphaseModel; @ModellingHypotheses {PlaneStrain}; @Gradient StrainStensor e₁; e₁.setEntryName("MatrixStrain"); @Flux StressStensor σ₁; σ₁.setEntryName("MatrixStress"); @Gradient StrainStensor e₂; e₂.setEntryName("InclusionStrain"); @Flux StressStensor σ₂; σ₂.setEntryName("InclusionStress"); @Gradient StrainStensor V; V.setEntryName("RelativeDisplacement"); @Flux StressStensor I; I.setEntryName("InteractionForce"); @TangentOperatorBlock ∂σ₁∕∂Δe₁; @AdditionalTangentOperatorBlock ∂σ₁∕∂Δe₂; @AdditionalTangentOperatorBlock ∂σ₂∕∂Δe₁; @AdditionalTangentOperatorBlock ∂σ₂∕∂Δe₂; @AdditionalTangentOperatorBlock ∂I∕∂ΔV; @MaterialProperty stress Y1; Y1.setEntryName("MatrixYoungModulus"); @MaterialProperty real nu1; nu1.setEntryName("MatrixPoissonRatio"); @MaterialProperty stress Y2; Y2.setEntryName("FiberYoungModulus"); @MaterialProperty real nu2; nu2.setEntryName("FiberPoissonRatio"); @MaterialProperty real rho; rho.setEntryName("FiberVolumeFraction"); @MaterialProperty real s; s.setEntryName("Size"); @ProvidesTangentOperator; @Integrator { // remove useless warnings, as we always compute the tangent operator static_cast(computeTangentOperator_); const auto λ₁ = computeLambda(Y1,nu1); const auto μ₁ = computeMu(Y1,nu1); const auto λ₂ = rho*computeLambda(Y2,nu2); const auto μ₂ = rho*computeMu(Y2,nu2); constexpr const auto λ₁₂ = 0.; constexpr const auto μ₁₂ = 0.; const auto kappa = μ₁/12/(1-rho)/pow(s,2); ∂σ₁∕∂Δe₁ = λ₁ ⋅ (I₂ ⊗ I₂) + 2 ⋅ μ₁ ⋅ I₄; ∂σ₁∕∂Δe₂ = λ₁₂ ⋅ (I₂ ⊗ I₂) + 2 ⋅ μ₁₂ ⋅ I₄; ∂σ₂∕∂Δe₁ = ∂σ₁∕∂Δe₂; ∂σ₂∕∂Δe₂ = λ₂ ⋅ (I₂⊗I₂) + 2 ⋅ μ₂ ⋅ I₄; σ₁ = ∂σ₁∕∂Δe₁ ⋅ e₁ + ∂σ₁∕∂Δe₂ ⋅ e₂; σ₂ = ∂σ₂∕∂Δe₁ ⋅ e₁ + ∂σ₂∕∂Δe₂ ⋅ e₂; I = kappa*V; ∂I∕∂ΔV = kappa ⋅ I₄; }
 /*! * \file IsotropicLinearHardeningPlasticity-generic.hxx * \brief This file declares the umat interface for the IsotropicLinearHardeningPlasticity behaviour law * \author Thomas Helfer * \date 14 / 10 / 2016 */ #ifndef LIB_GENERIC_ISOTROPICLINEARHARDENINGPLASTICITY_HXX #define LIB_GENERIC_ISOTROPICLINEARHARDENINGPLASTICITY_HXX #include"TFEL/Config/TFELConfig.hxx" #include"MFront/GenericBehaviour/BehaviourData.h" #ifdef _WIN32 #ifndef NOMINMAX #define NOMINMAX #endif /* NOMINMAX */ #include #ifdef small #undef small #endif /* small */ #endif /* _WIN32 */ #ifndef MFRONT_SHAREDOBJ #define MFRONT_SHAREDOBJ TFEL_VISIBILITY_EXPORT #endif /* MFRONT_SHAREDOBJ */ #ifdef __cplusplus extern "C"{ #endif /* __cplusplus */ MFRONT_SHAREDOBJ void IsotropicLinearHardeningPlasticity_setOutOfBoundsPolicy(const int); MFRONT_SHAREDOBJ int IsotropicLinearHardeningPlasticity_setParameter(const char *const,const double); /*! * \param[in,out] d: material data */ MFRONT_SHAREDOBJ int IsotropicLinearHardeningPlasticity_AxisymmetricalGeneralisedPlaneStrain(MFront_GB_BehaviourData* const); /*! * \param[in,out] d: material data */ MFRONT_SHAREDOBJ int IsotropicLinearHardeningPlasticity_Axisymmetrical(MFront_GB_BehaviourData* const); /*! * \param[in,out] d: material data */ MFRONT_SHAREDOBJ int IsotropicLinearHardeningPlasticity_PlaneStrain(MFront_GB_BehaviourData* const); /*! * \param[in,out] d: material data */ MFRONT_SHAREDOBJ int IsotropicLinearHardeningPlasticity_GeneralisedPlaneStrain(MFront_GB_BehaviourData* const); /*! * \param[in,out] d: material data */ MFRONT_SHAREDOBJ int IsotropicLinearHardeningPlasticity_Tridimensional(MFront_GB_BehaviourData* const); #ifdef __cplusplus } #endif /* __cplusplus */ #endif /* LIB_GENERIC_ISOTROPICLINEARHARDENINGPLASTICITY_HXX */
 /*! * \file StationaryHeatTransfer-generic.hxx * \brief This file declares the umat interface for the StationaryHeatTransfer behaviour law * \author Thomas Helfer * \date 15 / 02 / 2019 */ #ifndef LIB_GENERIC_STATIONARYHEATTRANSFER_HXX #define LIB_GENERIC_STATIONARYHEATTRANSFER_HXX #include"TFEL/Config/TFELConfig.hxx" #include"MFront/GenericBehaviour/BehaviourData.h" #ifdef _WIN32 #ifndef NOMINMAX #define NOMINMAX #endif /* NOMINMAX */ #include #ifdef small #undef small #endif /* small */ #endif /* _WIN32 */ #ifndef MFRONT_SHAREDOBJ #define MFRONT_SHAREDOBJ TFEL_VISIBILITY_EXPORT #endif /* MFRONT_SHAREDOBJ */ #ifdef __cplusplus extern "C"{ #endif /* __cplusplus */ MFRONT_SHAREDOBJ void StationaryHeatTransfer_setOutOfBoundsPolicy(const int); MFRONT_SHAREDOBJ int StationaryHeatTransfer_setParameter(const char *const,const double); /*! * \param[in,out] d: material data */ MFRONT_SHAREDOBJ int StationaryHeatTransfer_AxisymmetricalGeneralisedPlaneStrain(MFront_GB_BehaviourData* const); /*! * \param[in,out] d: material data */ MFRONT_SHAREDOBJ int StationaryHeatTransfer_Axisymmetrical(MFront_GB_BehaviourData* const); /*! * \param[in,out] d: material data */ MFRONT_SHAREDOBJ int StationaryHeatTransfer_PlaneStrain(MFront_GB_BehaviourData* const); /*! * \param[in,out] d: material data */ MFRONT_SHAREDOBJ int StationaryHeatTransfer_GeneralisedPlaneStrain(MFront_GB_BehaviourData* const); /*! * \param[in,out] d: material data */ MFRONT_SHAREDOBJ int StationaryHeatTransfer_Tridimensional(MFront_GB_BehaviourData* const); #ifdef __cplusplus } #endif /* __cplusplus */ #endif /* LIB_GENERIC_STATIONARYHEATTRANSFER_HXX */
This diff is collapsed.
 /*! * \file TFEL/Material/IsotropicLinearHardeningPlasticityBehaviourData.hxx * \brief this file implements the IsotropicLinearHardeningPlasticityBehaviourData class. * File generated by tfel version 3.3.0 * \author Thomas Helfer * \date 14 / 10 / 2016 */ #ifndef LIB_TFELMATERIAL_ISOTROPICLINEARHARDENINGPLASTICITY_BEHAVIOUR_DATA_HXX #define LIB_TFELMATERIAL_ISOTROPICLINEARHARDENINGPLASTICITY_BEHAVIOUR_DATA_HXX #include #include #include #include #include #include #include"TFEL/Raise.hxx" #include"TFEL/PhysicalConstants.hxx" #include"TFEL/Config/TFELConfig.hxx" #include"TFEL/Config/TFELTypes.hxx" #include"TFEL/Metaprogramming/StaticAssert.hxx" #include"TFEL/TypeTraits/IsFundamentalNumericType.hxx" #include"TFEL/TypeTraits/IsReal.hxx" #include"TFEL/Math/General/IEEE754.hxx" #include"TFEL/Math/stensor.hxx" #include"TFEL/Math/Stensor/StensorConceptIO.hxx" #include"TFEL/Math/tmatrix.hxx" #include"TFEL/Math/Matrix/tmatrixIO.hxx" #include"TFEL/Math/st2tost2.hxx" #include"TFEL/Math/ST2toST2/ST2toST2ConceptIO.hxx" #include"TFEL/Math/ST2toST2/ST2toST2View.hxx" #include"TFEL/Material/ModellingHypothesis.hxx" #include "MFront/GenericBehaviour/State.hxx" #include "MFront/GenericBehaviour/BehaviourData.hxx" namespace tfel{ namespace material{ //! \brief forward declaration template class IsotropicLinearHardeningPlasticityBehaviourData; //! \brief forward declaration template class IsotropicLinearHardeningPlasticityIntegrationData; //! \brief forward declaration template std::ostream& operator <<(std::ostream&,const IsotropicLinearHardeningPlasticityBehaviourData&); template class IsotropicLinearHardeningPlasticityBehaviourData { static constexpr unsigned short N = ModellingHypothesisToSpaceDimension::value; TFEL_STATIC_ASSERT(N==1||N==2||N==3); TFEL_STATIC_ASSERT(tfel::typetraits::IsFundamentalNumericType::cond); TFEL_STATIC_ASSERT(tfel::typetraits::IsReal::cond); friend std::ostream& operator<< <>(std::ostream&,const IsotropicLinearHardeningPlasticityBehaviourData&); /* integration data is declared friend to access driving variables at the beginning of the time step */ friend class IsotropicLinearHardeningPlasticityIntegrationData; static constexpr unsigned short TVectorSize = N; typedef tfel::math::StensorDimeToSize StensorDimeToSize; static constexpr unsigned short StensorSize = StensorDimeToSize::value; typedef tfel::math::TensorDimeToSize TensorDimeToSize; static constexpr unsigned short TensorSize = TensorDimeToSize::value; using ushort = unsigned short; using Types = tfel::config::Types; using real = typename Types::real; using time = typename Types::time; using length = typename Types::length; using frequency = typename Types::frequency; using stress = typename Types::stress; using strain = typename Types::strain; using strainrate = typename Types::strainrate; using stressrate = typename Types::stressrate; using temperature = typename Types::temperature; using thermalexpansion = typename Types::thermalexpansion; using thermalconductivity = typename Types::thermalconductivity; using massdensity = typename Types::massdensity; using energydensity = typename Types::energydensity; using TVector = typename Types::TVector; using Stensor = typename Types::Stensor; using Stensor4 = typename Types::Stensor4; using FrequencyStensor = typename Types::FrequencyStensor; using ForceTVector = typename Types::ForceTVector; using StressStensor = typename Types::StressStensor; using StressRateStensor = typename Types::StressRateStensor; using DisplacementTVector = typename Types::DisplacementTVector; using StrainStensor = typename Types::StrainStensor; using StrainRateStensor = typename Types::StrainRateStensor; using StiffnessTensor = typename Types::StiffnessTensor; using Tensor = typename Types::Tensor; using FrequencyTensor = typename Types::FrequencyTensor; using StressTensor = typename Types::StressTensor; using ThermalExpansionCoefficientTensor = typename Types::ThermalExpansionCoefficientTensor; using DeformationGradientTensor = typename Types::DeformationGradientTensor; using DeformationGradientRateTensor = typename Types::DeformationGradientRateTensor; using TemperatureGradient = typename Types::TemperatureGradient; using HeatFlux = typename Types::HeatFlux; using TangentOperator = StiffnessTensor; using PhysicalConstants = tfel::PhysicalConstants; protected: StrainStensor eto; StressStensor sig; #line 17 "IsotropicLinearHardeningPlasticity.mfront" stress young; #line 19 "IsotropicLinearHardeningPlasticity.mfront" real nu; #line 21 "IsotropicLinearHardeningPlasticity.mfront" stress H; #line 23 "IsotropicLinearHardeningPlasticity.mfront" stress s0; #line 26 "IsotropicLinearHardeningPlasticity.mfront" StrainStensor eel; #line 28 "IsotropicLinearHardeningPlasticity.mfront" strain p; temperature T; public: /*! * \brief Default constructor */ IsotropicLinearHardeningPlasticityBehaviourData() {} /*! * \brief copy constructor */ IsotropicLinearHardeningPlasticityBehaviourData(const IsotropicLinearHardeningPlasticityBehaviourData& src) : eto(src.eto), sig(src.sig), young(src.young), nu(src.nu), H(src.H), s0(src.s0), eel(src.eel), p(src.p), T(src.T) {} /* * \brief constructor for the Generic interface * \param[in] mgb_d: behaviour data */ IsotropicLinearHardeningPlasticityBehaviourData(const mfront::gb::BehaviourData& mgb_d) : young(mgb_d.s1.material_properties[0]), nu(mgb_d.s1.material_properties[1]), H(mgb_d.s1.material_properties[2]), s0(mgb_d.s1.material_properties[3]), eel(&mgb_d.s0.internal_state_variables[0]), p(mgb_d.s0.internal_state_variables[StensorSize]), T(mgb_d.s0.external_state_variables[0]) { } /* * \brief Assignement operator */ IsotropicLinearHardeningPlasticityBehaviourData& operator=(const IsotropicLinearHardeningPlasticityBehaviourData& src){ this->eto = src.eto; this->sig = src.sig; this->young = src.young; this->nu = src.nu; this->H = src.H; this->s0 = src.s0; this->eel = src.eel; this->p = src.p; this->T = src.T; return *this; } void exportStateData(mfront::gb::State& mbg_s1) const { using namespace tfel::math; tfel::fsalgo::copy::exe(this->sig.begin(), mbg_s1.thermodynamic_forces); tfel::fsalgo::copy::exe(this->eel.begin(), mbg_s1.internal_state_variables); mbg_s1.internal_state_variables[StensorSize] = this->p; } // end of exportStateData }; // end of IsotropicLinearHardeningPlasticityBehaviourDataclass template std::ostream& operator <<(std::ostream& os,const IsotropicLinearHardeningPlasticityBehaviourData& b) { os << "εᵗᵒ : " << b.eto << '\n'; os << "σ : " << b.sig << '\n'; os << "young : " << b.young << '\n'; os << "nu : " << b.nu << '\n'; os << "H : " << b.H << '\n'; os << "s0 : " << b.s0 << '\n'; os << "eel : " << b.eel << '\n'; os << "p : " << b.p << '\n'; os << "T : " << b.T << '\n'; return os; } } // end of namespace material } // end of namespace tfel #endif /* LIB_TFELMATERIAL_ISOTROPICLINEARHARDENINGPLASTICITY_BEHAVIOUR_DATA_HXX */
 /*! * \file TFEL/Material/IsotropicLinearHardeningPlasticityIntegrationData.hxx * \brief this file implements the IsotropicLinearHardeningPlasticityIntegrationData class. * File generated by tfel version 3.3.0 * \author Thomas Helfer * \date 14 / 10 / 2016 */ #ifndef LIB_TFELMATERIAL_ISOTROPICLINEARHARDENINGPLASTICITY_INTEGRATION_DATA_HXX #define LIB_TFELMATERIAL_ISOTROPICLINEARHARDENINGPLASTICITY_INTEGRATION_DATA_HXX #include #include #include #include #include #include"TFEL/Raise.hxx" #include"TFEL/PhysicalConstants.hxx" #include"TFEL/Config/TFELConfig.hxx" #include"TFEL/Config/TFELTypes.hxx" #include"TFEL/Metaprogramming/StaticAssert.hxx" #include"TFEL/TypeTraits/IsFundamentalNumericType.hxx" #include"TFEL/TypeTraits/IsScalar.hxx" #include"TFEL/TypeTraits/IsReal.hxx" #include"TFEL/TypeTraits/Promote.hxx" #include"TFEL/Math/General/IEEE754.hxx" #include"TFEL/Math/stensor.hxx" #include"TFEL/Math/st2tost2.hxx" #include "MFront/GenericBehaviour/State.hxx" #include "MFront/GenericBehaviour/BehaviourData.hxx" namespace tfel{ namespace material{ //! \brief forward declaration template class IsotropicLinearHardeningPlasticityIntegrationData; //! \brief forward declaration template std::ostream& operator <<(std::ostream&,const IsotropicLinearHardeningPlasticityIntegrationData&); template class IsotropicLinearHardeningPlasticityIntegrationData { static constexpr unsigned short N = ModellingHypothesisToSpaceDimension::value; TFEL_STATIC_ASSERT(N==1||N==2||N==3); TFEL_STATIC_ASSERT(tfel::typetraits::IsFundamentalNumericType::cond); TFEL_STATIC_ASSERT(tfel::typetraits::IsReal::cond); friend std::ostream& operator<< <>(std::ostream&,const IsotropicLinearHardeningPlasticityIntegrationData&); static constexpr unsigned short TVectorSize = N; typedef tfel::math::StensorDimeToSize StensorDimeToSize; static constexpr unsigned short StensorSize = StensorDimeToSize::value; typedef tfel::math::TensorDimeToSize TensorDimeToSize; static constexpr unsigned short TensorSize = TensorDimeToSize::value; using ushort = unsigned short; using Types = tfel::config::Types; using real = typename Types::real; using time = typename Types::time; using length = typename Types::length; using frequency = typename Types::frequency;