Skip to content

GitLab

  • Projects
  • Groups
  • Snippets
  • Help
    • Loading...
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
    • Contribute to GitLab
  • Sign in / Register
M
mfront-wrapper
  • Project overview
    • Project overview
    • Details
    • Activity
    • Releases
  • Repository
    • Repository
    • Files
    • Commits
    • Branches
    • Tags
    • Contributors
    • Graph
    • Compare
  • Issues 9
    • Issues 9
    • List
    • Boards
    • Labels
    • Service Desk
    • Milestones
  • Merge Requests 0
    • Merge Requests 0
  • CI / CD
    • CI / CD
    • Pipelines
    • Jobs
    • Schedules
  • Operations
    • Operations
    • Incidents
    • Environments
  • Analytics
    • Analytics
    • CI / CD
    • Repository
    • Value Stream
  • Wiki
    • Wiki
  • Members
    • Members
  • Collapse sidebar
  • Activity
  • Graph
  • Create a new issue
  • Jobs
  • Commits
  • Issue Boards
  • navier-fenics
  • mfront-wrapper
  • Issues
  • #7

Closed
Open
Opened Mar 03, 2020 by Jeremy BLEYER@jeremy.bleyerOwner

Handle generalized behaviours with block structure

Many pairs of Gradient/Flux are defined in MFront, each flux \sigma_i being associated with one gradient g_i so that internal power is assumed to be \sigma_i\cdot\delta{g}_i dx. Each flux may depend on all gradients and state variables (temperature in particular), this will be handled using tangent_operator_blocks. The only thing which needs to be done is to register the gradient operator with something like:

problem.register_gradient("TotalStrain", sym(grad(u)))
problem.register_gradient("TemperatureGradient", grad(T))
problem.register_gradient("TransformationGradient", Identity(dim)+grad(u))

for such classical gradient operators, we can implement them by default. Note that expressions depend on the hypothesis. For more general behaviours like multiphase models for instance, we can have:

u  = Function(V)
(u1, u2) = split(u)
problem.register_gradient("Strain1", sym(grad(u1)))
problem.register_gradient("Strain2", sym(grad(u2)))
problem.register_gradient("RelativeDisplacement", u2-u1)

For more general behaviours which do not fit into this scope, we could ask for registering (or just writing?) explicitly the terms of the variational form:

H = problem.get_state_variable("Enthalpy")
H0 = H.previous()
j = problem.get_thermodynamical_force("HeatFlux")
j0 = j.previous()
problem.register_term(H-H0, test_field="Temperature")
problem.register_term(dt*(theta*j-(1-theta)*j0), test_field="TemperatureGradient")
# or instead of the last two lines just do
problem.L = (T_*(H-H0)+dt*(theta*dot(grad(T_), j)-(1-theta)*dot(grad(T_) ,j0)))*dx
Assignee
Assign to
None
Milestone
None
Assign milestone
Time tracking
None
Due date
None
Reference: navier-fenics/mfront-wrapper#7